Arbuscular mycorrhizal fungi and foliar phosphorus inorganic supply alleviate salt stress effects in physiological attributes, but only arbuscular mycorrhizal fungi increase biomass in woody species of a semiarid environment

被引:34
|
作者
Frosi, Gabriella [1 ]
Barros, Vanessa Andrade [1 ]
Oliveira, Marciel Teixeira [1 ]
Santos, Mariana [1 ]
Ramos, Diego Gomes [1 ]
Maia, Leonor Costa [2 ]
Santos, Mauro Guida [1 ]
机构
[1] Univ Fed Pernambuco, Dept Bot, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Micol, BR-50670901 Recife, PE, Brazil
关键词
Caatinga; chlorophyll fluorescence; gas exchange; leaf biochemistry; mycorrhiza; phosphorus; DROUGHT STRESS; MAIZE PLANTS; PHOTOSYNTHESIS; SYMBIOSIS; GROWTH; NITROGEN; TOLERANCE; SALINITY; ROOT; MECHANISMS;
D O I
10.1093/treephys/tpx105
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Salinity may limit plant growth especially in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) and the supply of inorganic phosphorus (Pi) could alleviate the negative effects of such stress by improvement in stomatal conductance, photosynthesis and biomass. The aim of this study is to evaluate the ecophysiological performance of Cenostigma pyramidale (Tul.) E. Gagnon & G. P. Lewis (Fabaceae) in a greenhouse under salinity conditions in combination with the supply of AMF and leaf Pi. The experiment was conducted in a factorial design considering two levels of salinity (+ NaCl and -NaCl), two levels of AMF (+ AMF and -AMF) and two levels of leaf Pi supply (+ Pi and -Pi). The variables gas exchange, leaf primary metabolism, dry biomass and nutrients were measured. Plants with AMF under non-saline conditions presented a high photosynthesis and biomass. In saline conditions, AMF promoted lower decrease in photosynthesis, high shoot dry matter and low content of leaf and root Na+ and Cl-. Plants treated with leaf Pi increased biomass and photosynthetic pigments under both conditions and accumulated more Cl-in shoots under salinity conditions. When combined, AMF * Pi increased photosynthesis only in non-saline conditions. Plants under salinity conditions without AMF and Pi had higher decreases in gas exchange and high content of Cl-in roots. Therefore, C. pyramidale plants improved their metabolism under both growth conditions in the presence of AMF, Pi or a combination of both. However, the greatest increases in growth and tolerance to salinity occurred in the isolated presence of AMF.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [21] Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress
    Wang, Yanhong
    Wang, Minqiang
    Li, Yan
    Wu, Aiping
    Huang, Juying
    PLOS ONE, 2018, 13 (04):
  • [22] Effects of Arbuscular Mycorrhizal Fungi on the Growth and Physiological Performance of Sophora davidii Seedling Under Low-Phosphorus Stress
    Zhao, Li-Li
    Wang, Lei-ting
    Chen, Keke
    Sun, Hang
    Wang, Pu-Chang
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (07) : 2383 - 2395
  • [23] Arbuscular Mycorrhizal Fungi Increase Nutritional Quality of Soilless Grown Lettuce while Overcoming Low Phosphorus Supply
    Cela, Fatjon
    Avio, Luciano
    Giordani, Tommaso
    Vangelisti, Alberto
    Cavallini, Andrea
    Turrini, Alessandra
    Sbrana, Cristiana
    Pardossi, Alberto
    Incrocci, Luca
    FOODS, 2022, 11 (22)
  • [24] Phosphorus stress strongly reduced plant physiological activity, but only temporarily, in a mesocosm experiment with Zea mays colonized by arbuscular mycorrhizal fungi
    Verlinden, Melanie S.
    AbdElgawad, Hamada
    Ven, Arne
    Verryckt, Lore T.
    Wieneke, Sebastian
    Janssens, Ivan A.
    Vicca, Sara
    BIOGEOSCIENCES, 2022, 19 (09) : 2353 - 2364
  • [25] Differential effects of arbuscular mycorrhizal fungi on three salt-tolerant grasses under cadmium and salt stress
    Jia, Bingbing
    Diao, Fengwei
    Ding, Shengli
    Shi, Zhongqi
    Xu, Jing
    Hao, Lijun
    Li, Frank Yonghong
    Guo, Wei
    LAND DEGRADATION & DEVELOPMENT, 2023, 34 (02) : 506 - 520
  • [26] Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress
    Hashem, Abeer
    Abd allah, Elsayed Fathi
    Alqarawi, Abdulaziz A.
    Wirth, Stephan
    Egamberdieva, Dilfuza
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2019, 26 (01) : 38 - 48
  • [27] Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress
    Zhang, Wenwen
    Wang, Chong
    Lu, Tianyi
    Zheng, Yanjia
    PLANT AND SOIL, 2018, 423 (1-2) : 125 - 140
  • [28] Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley
    Hajiboland, Roghieh
    Joudmand, Arshad
    Aliasgharzad, Nasser
    Tolra, Roser
    Poschenrieder, Charlotte
    CROP & PASTURE SCIENCE, 2019, 70 (03): : 218 - 233
  • [29] Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress
    Wenwen Zhang
    Chong Wang
    Tianyi Lu
    Yanjia Zheng
    Plant and Soil, 2018, 423 : 125 - 140
  • [30] Physiological and Metabolic Effects of the Inoculation of Arbuscular Mycorrhizal Fungi in Solanum tuberosum Crops under Water Stress
    Valdebenito, Analia
    Nahuelcura, Javiera
    Santander, Christian
    Cornejo, Pablo
    Contreras, Boris
    Gomez-Alonso, Sergio
    Ruiz, Antonieta
    PLANTS-BASEL, 2022, 11 (19):