High etching selectivity of spin-on-carbon hard mask process for 22nm node and beyond

被引:4
|
作者
Iwao, Fumiko [1 ]
Shimura, Satoru [1 ]
Kyouda, Hideharu [1 ]
Oyama, Kenichi [2 ]
Yamauchi, Shohei [2 ]
Hara, Arisa [2 ]
Natori, Sakurako [2 ]
Yaegashi, Hidetami [3 ]
机构
[1] Tokyo Electron Kyushu Ltd, 650 Mitsuzawa,Hosaka Cho, Nirasaki City, Yamanashi 4070192, Japan
[2] Tokyo Electron Ltd, Nirasaki City, Yamanashi 4070192, Japan
[3] Tokyo Electron Ltd, Minato Ku, Tokyo 1076325, Japan
关键词
22nm node; 193nm immersion lithography; EUV lithography; Multi-layer process; Spin-on-carbon(SOC);
D O I
10.1117/12.916326
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As part of the trend toward finer semiconductor design rules, the resist film thickness is getting thinner, and the etching technology that uses resist masking is getting more difficult. To solve such a problem in recent years, the film structure used in the resist process also is changing from the single-layer process (BARC and resist stacked film) to the multi-layer process (Carbon hard-mask, middle layer and resist stacked film) The carbon hard-mask of multi-layer process can be divided into two kinds, which are the CVD-carbon (CVD-C) that uses the chemical vapor deposition method and Spin-on-carbon (SOC) that uses the spin-coating method. CVD-C is very attractive for ensuring the high etching selection ratio, but still has major challenges in particle reduction, lower planarization of substrate and high process cost. On the other hand, SOC is very attractive for low cost process, high level of planarization of substrate and no particles. Against this background, we verify the development of the SOC that had the high etch selection ratio by improving etching condition, material and SOC cure condition. Moreover, we can fabricate below 30nm SiO2 patterning and the possibility of development with extreme ultraviolet lithography (EUVL) was suggested. This paper reports on the results of a comprehensive process evaluation of a SOC based multi-layer technology using lithography clusters, etching tools.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] In-Situ Studies of Interfacial Bonding of High-κ Dielectrics for CMOS Beyond 22nm
    Wallace, R. M.
    PHYSICS AND TECHNOLOGY OF HIGH-K GATE DIELECTRICS 6, 2008, 16 (05): : 255 - 271
  • [42] 22nm node ArF lithography performance improvement by utilizing mask 3D topography: controlled sidewall angle
    Watanabe, Hiroshi
    Mesuda, Kei
    Hayano, Katsuya
    Tsujimoto, Eiji
    Takamizawa, Hideyoshi
    Ohhashi, Toshio
    Sakasai, Naruo
    Kudo, Shintaro
    Matsuyama, Tomoyuki
    PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY XVIII, 2011, 8081
  • [43] Issues on Interfacial Oxide Layer (IL) in EOT Scaling of High-k/Metal Gate CMOS for 22nm Technology Node and Beyond
    Park, C. S.
    Kirsch, P. D.
    PHYSICS AND TECHNOLOGY OF HIGH-K MATERIALS 8, 2010, 33 (03): : 45 - 52
  • [44] Intel 22nm Low-Power FinFET (22FFL) Process Technology for 5G and Beyond
    Lee, Hyung-Jin
    Callender, Steven
    Rami, Said
    Shin, Woorim
    Yu, Qiang
    Marulanda, Jose Mauricio
    2020 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2020,
  • [45] Ultra-Thin-Body and BOX (UTBB) Fully Depleted (FD) Device Integration for 22nm Node and Beyond
    Liu, Q.
    Yagishita, A.
    Loubet, N.
    Khakifirooz, A.
    Kulkarni, P.
    Yamamoto, T.
    Cheng, K.
    Fujiwara, M.
    Cai, J.
    Dorman, D.
    Mehta, S.
    Khare, P.
    Yako, K.
    Zhu, Y.
    Mignot, S.
    Kanakasabapathy, S.
    Monfray, S.
    Boeuf, F.
    Koburger, C.
    Sunamura, H.
    Ponoth, S.
    Reznicek, A.
    Haran, B.
    Upham, A.
    Johnson, R.
    Edge, L. F.
    Kuss, J.
    Levin, T.
    Berliner, N.
    Leobandung, E.
    Skotnicki, T.
    Hane, M.
    Bu, H.
    Ishimaru, K.
    Kleemeier, W.
    Takayanagi, M.
    Doris, B.
    Sampson, R.
    2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, : 61 - +
  • [46] Black Border, Mask 3D effects: covering challenges of EUV mask architecture for 22 nm node and beyond
    Davydova, Natalia
    van Setten, Eelco
    de Kruif, Robert
    Connolly, Brid
    Fukugami, Norihito
    Kodera, Yutaka
    Morimoto, Hiroaki
    Sakata, Yo
    Kotani, Jun
    Kondo, Shinpei
    Imoto, Tomohiro
    Rolfe, Haiko
    Ullrich, Albrecht
    Jaganatharaja, Ramasubramanian Kottumakulal
    Lammers, Ad
    Oorschoti, Dorothe
    Man, Cheuk-Wah
    Schiffelers, Guido
    van Dijk, Joep
    30TH EUROPEAN MASK AND LITHOGRAPHY CONFERENCE, 2014, 9231
  • [47] High Resolution Mask Process and Substrate for 20 nm and Early 14 nm Node Lithography
    Faure, Tom
    Akutagawa, Satoshi
    Badger, Karen
    Kindt, Louis
    Kotani, Jun
    Mizoguchi, Takashi
    Nemoto, Satoru
    Seki, Kazunori
    Senna, Tasuku
    Wistrom, Richard
    Igarashi, Shinich
    Inazuki, Yukio
    Nishikawa, Kazuhiro
    Yoshikawa, Hiroki
    PHOTOMASK TECHNOLOGY 2011, 2011, 8166
  • [48] Improvement of etching selectivity for 32-nm node mask making - art. no. 66070E
    Lu, C. L.
    Hsia, L. Y.
    Cheng, T. H.
    Chang, S. C.
    Wang, W. C.
    Lee, H. J.
    Ku, Y. C.
    PHOTOMASK AND NEXT-GENERATION LITHOGRAPHY MASK TECHNOLOGY XIV, PTS 1 AND 2, 2007, 6607 : E6070 - E6070
  • [49] Lithographic Qualification of High Transmission Mask Blank for 10nm Node and Beyond
    Xu, Yongan
    Faure, Tom
    Viswanathan, Ramya
    Lobb, Granger
    Wistrom, Richard
    Burns, Sean
    Hu, Lin
    Graur, Ioana
    Bleiman, Ben
    Fischer, Dan
    Mignot, Yann
    Sakamoto, Yoshifumi
    Toda, Yusuke
    Bolton, John
    Bailey, Todd
    Felix, Nelson
    Arnold, John
    Colburn, Matthew
    OPTICAL MICROLITHOGRAPHY XXIX, 2016, 9780
  • [50] Evolution of Radiation-Induced Soft Errors in FinFET SRAMs under Process Variations beyond 22nm
    Royer, Pablo
    Garcia-Redondo, Fernando
    Lopez-Vallejo, Marisa
    PROCEEDINGS OF THE 2015 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH 15), 2015, : 112 - 117