Prediction of traffic convective instability with spectral analysis of the Aw-Rascle-Zhang model

被引:32
|
作者
Belletti, Francois [1 ]
Huo, Mandy [2 ,3 ]
Litrico, Xavier [6 ]
Bayen, Alexandre M. [1 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Inst Transportat Studies, Berkeley, CA 94720 USA
[6] R&D Ctr SUEZ Environm, LyRE, Bordeaux, France
关键词
Second order models; Aw-Rascle-Zhang; Spectral Analysis; Linear Systems; Linearization of PDEs; CELL TRANSMISSION MODEL; CAR-FOLLOWING MODEL; PHASE-TRANSITIONS; 2ND-ORDER MODELS; SHOCK-WAVES; FLOW; APPROXIMATIONS; DIAGRAM; STATES;
D O I
10.1016/j.physleta.2015.05.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article starts from the classical Aw-Rascle-Zhang (ARZ) model for freeway traffic and develops a spectral analysis of its linearized version. A counterpart to the Froude number in hydrodynamics is defined that enables a classification of the nature of vehicle traffic flow using the explicit solution resulting from the analysis. We prove that our linearization about an equilibrium is stable for congested regimes and unstable otherwise. NGSIM data for congested traffic trajectories is used so as to confront the linearized model's predictions to actual macroscopic behavior of traffic. The model is shown to achieve good accuracy for speed and flow. In particular, it accounts for the advection of oscillations on boundaries into the interior domain where the PDE under study is solved. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2319 / 2330
页数:12
相关论文
共 50 条
  • [31] The Riemann Problem with Delta Initial Data for the Non-Isentropic Improved Aw-Rascle-Zhang Model
    Weifeng Jiang
    Tingting Chen
    Tong Li
    Zhen Wang
    Acta Mathematica Scientia, 2023, 43 : 237 - 258
  • [32] THE RIEMANN PROBLEM WITH DELTA INITIAL DATA FOR THE NON-ISENTROPIC IMPROVED AW-RASCLE-ZHANG MODEL
    蒋伟峰
    陈停停
    李彤
    王振
    ActaMathematicaScientia, 2023, 43 (01) : 237 - 258
  • [33] THE RIEMANN PROBLEM WITH DELTA INITIAL DATA FOR THE NON-ISENTROPIC IMPROVED AW-RASCLE-ZHANG MODEL
    Jiang, Weifeng
    Chen, Tingting
    Li, Tong
    Wang, Zhen
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 237 - 258
  • [34] 耦合Aw-Rascle-Zhang模型的Riemann解及其稳定性
    潘丽君
    吕顺
    翁莎莎
    数学物理学报, 2024, 44 (04) : 885 - 895
  • [35] Developing an Aw–Rascle model of traffic flow
    Wei-Feng Jiang
    Zhen Wang
    Journal of Engineering Mathematics, 2016, 97 : 135 - 146
  • [36] Extensions and amplifications of a traffic model of Aw and Rascle
    Greenberg, JM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) : 729 - 745
  • [37] Nonlinear analysis in the Aw-Rascle anticipation model of traffic flow
    Ou, Zhong-Hui
    Dai, Shi-Qiang
    Zhang, Peng
    Dong, Li-Yun
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (03) : 605 - 618
  • [38] The Aw-Rascle traffic model with Chaplygin pressure
    Pan, Lijun
    Han, Xinli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 379 - 387
  • [39] Developing an Aw-Rascle model of traffic flow
    Jiang, Wei-Feng
    Wang, Zhen
    JOURNAL OF ENGINEERING MATHEMATICS, 2016, 97 (01) : 135 - 146
  • [40] Flux approximation to the Aw-Rascle model of traffic flow
    Liu, Jinjing
    Xiao, Wanyi
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)