Robustness of Novel Surface Invariance to Geometric Transformation

被引:0
|
作者
Tosranon, P. [1 ,2 ]
Sanpanish, A. [1 ,3 ]
Bunluechokchai, S. [2 ]
Pintavirooj, C. [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Fac Engn, Dept Elect, Res Ctr Commun & Informat Technol, Bangkok 10520, Thailand
[2] King Mongkuts Univ Technol, Fac Sci Appl, Dept Ind Phys & Med Instrumentat, Bangkok 10800, Thailand
[3] Mahidol Univ, Inst Sci & Technol Res & Dev, Bangkok 73170, Thailand
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we explore the novel geometric invariance on surfaces based on the set of invariant normal vectors that are relatively preserved under geometric transformations, are local, intrinsic and computed from the differential geometry of the surface. To reduce the sensitivity of the computation of the geometric invariance to noise, we use a B-Spline surface representation that smoothes out the surface prior to the computation of these invariant points. The robustness of the geometric invariance is shown for a variety of geometric transformation. The result is very promising.
引用
收藏
页码:533 / +
页数:2
相关论文
共 50 条
  • [31] The Inversion Invariance of the Lorentz Transformation
    Sallhofer, H.
    Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 52 (8-9):
  • [32] Geometric constraint solving with geometric transformation
    高小山
    黄磊东
    蒋鲲
    ScienceinChina(SeriesF:InformationSciences), 2001, (01) : 50 - 59
  • [33] Geometric constraint solving with geometric transformation
    Xiaoshan Gao
    Leidong Huang
    Kun Jiang
    Science in China Series F Information Sciences, 2001, 44 (1): : 50 - 59
  • [34] Robustness of posynomial geometric programming optima
    Federowicz, AJ
    Rajgopal, J
    MATHEMATICAL PROGRAMMING, 1999, 85 (02) : 423 - 431
  • [35] Certifying Geometric Robustness of Neural Networks
    Balunovic, Mislav
    Baader, Maximilian
    Singh, Gagandeep
    Gehr, Timon
    Vechev, Martin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [36] Geometric robustness theory and biological networks
    Ay, Nihat
    Krakauer, David C.
    THEORY IN BIOSCIENCES, 2007, 125 (02) : 93 - 121
  • [37] Geometric robustness theory and biological networks
    Nihat Ay
    David C. Krakauer
    Theory in Biosciences, 2007, 125 : 93 - 121
  • [38] Robustness of Interdependent Random Geometric Networks
    Zhang, Jianan
    Yeh, Edmund
    Modiano, Eytan
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 172 - 179
  • [39] A novel method for harmonic geometric transformation model based on wavelet collocation
    Tang, YY
    Feng, XC
    You, XG
    Liao, ZW
    Sun, L
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL I, PROCEEDINGS, 2002, : 49 - 52
  • [40] Local scale invariance and robustness of proper scoring rules
    Bolin, David
    Wallin, Jonas
    ENERGY AND BUILDINGS, 2023, 282 : 140 - 159