A disorder induced field effect transistor in bilayer and trilayer graphene

被引:6
|
作者
Xu, Dongwei [1 ]
Liu, Haiwen [2 ,3 ]
Sacksteder, Vincent [2 ]
Song, Juntao [4 ,5 ]
Jiang, Hua [3 ,6 ]
Sun, Qing-feng [2 ]
Xie, X. C. [3 ]
机构
[1] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Hebei Normal Univ, Dept Phys, Shijiazhuang 050024, Hebei, Peoples R China
[5] Hebei Normal Univ, Hebei Adv Thin Film Lab, Shijiazhuang 050024, Hebei, Peoples R China
[6] Soochow Univ, Dept Phys, Suzhou 215006, Peoples R China
基金
美国能源部;
关键词
TUNABLE BAND-GAP; TRANSPORT;
D O I
10.1088/0953-8984/25/10/105303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We propose using disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the effects of disorder are confined to only one of the graphene layers. This effect is based on the ability of the bias voltage to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene and gapped bilayer graphene.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Band Gap and Correlated Phenomena in Bilayer and Trilayer Graphene
    Lee, Yongjin
    Myhro, Kevin
    Tran, David
    Gilgren, Nathaniel
    Velasco, Jairo, Jr.
    Bao, Wenzhong
    Deo, Michael
    Lau, Chun Ning
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS V, 2013, 8725
  • [32] Possible quantized charge pump in bilayer and trilayer graphene
    Wang, Mei-Juan
    Wang, Jun
    Liu, Jun-Feng
    NEW JOURNAL OF PHYSICS, 2020, 22 (01)
  • [33] Towards single-gate field effect transistor utilizing dual-doped bilayer graphene
    Wang, T. H.
    Zhu, Y. F.
    Jiang, Q.
    CARBON, 2014, 77 : 431 - 441
  • [34] Bilayer graphene nanoribbon field-effect transistor with electrically embedded source-side gate
    Owlia, Hadi
    Fazli, Roohallah
    SUPERLATTICES AND MICROSTRUCTURES, 2020, 142 (142)
  • [35] Natural Edge Bilayer Graphene Transistor
    Domaratskiy I.K.
    Kashchenko M.A.
    Semkin V.A.
    Mylnikov D.A.
    Titova E.I.
    Svintsov D.A.
    Russian Microelectronics, 2023, 52 (Suppl 1) : S2 - S5
  • [36] A quantum topological transistor in bilayer graphene
    Zhang, Qingtian
    Yi, Yaofeng
    Chan, Kwok Sum
    Mu, Zhongfei
    Li, Jingbo
    APPLIED PHYSICS EXPRESS, 2018, 11 (07)
  • [37] Bipolar Photoresponse of a Graphene Field-Effect Transistor Induced by Photochemical Reactions
    Khan, Muhammad Farooq
    Elahi, Ehsan
    Ul Hassan, Najam
    Rehman, Malik Abdul
    Khalil, H. M. Waseem
    Khan, Muhammad Asghar
    Rehman, Shania
    Hao, Aize
    Noh, Hwayong
    Khan, Karim
    Eom, Jonghwa
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (09) : 5111 - 5119
  • [38] Self-Induced Gate Dielectric for Graphene Field-Effect Transistor
    Thiyagarajan, Kaliannan
    Saravanakumar, Balasubramaniam
    Mohan, Rajneesh
    Kim, Sang-Jae
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (14) : 6443 - 6446
  • [39] MICROWAVE FIELD EFFECT TRANSISTOR BASED ON GRAPHENE
    Dragoman, M.
    Deligeorgis, G.
    Neculoiu, D.
    Dragoman, D.
    Konstantinidis, G.
    Cismaru, A.
    Plana, R.
    2010 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), VOLS 1 AND 2, 2010, : 279 - 282
  • [40] Graphene Field Effect Transistor as Radiation Sensor
    Patil, A.
    Koybasi, O.
    Lopez, G.
    Foxe, M.
    Childres, I.
    Roecker, C.
    Boguski, J.
    Gu, J.
    Bolen, M. L.
    Capano, M. A.
    Ye, P.
    Jovanovic, I.
    Chen, Y. P.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 455 - 459