A disorder induced field effect transistor in bilayer and trilayer graphene

被引:6
|
作者
Xu, Dongwei [1 ]
Liu, Haiwen [2 ,3 ]
Sacksteder, Vincent [2 ]
Song, Juntao [4 ,5 ]
Jiang, Hua [3 ,6 ]
Sun, Qing-feng [2 ]
Xie, X. C. [3 ]
机构
[1] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[4] Hebei Normal Univ, Dept Phys, Shijiazhuang 050024, Hebei, Peoples R China
[5] Hebei Normal Univ, Hebei Adv Thin Film Lab, Shijiazhuang 050024, Hebei, Peoples R China
[6] Soochow Univ, Dept Phys, Suzhou 215006, Peoples R China
基金
美国能源部;
关键词
TUNABLE BAND-GAP; TRANSPORT;
D O I
10.1088/0953-8984/25/10/105303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We propose using disorder to produce a field effect transistor (FET) in biased bilayer and trilayer graphene. Modulation of the bias voltage can produce large variations in the conductance when the effects of disorder are confined to only one of the graphene layers. This effect is based on the ability of the bias voltage to select which of the graphene layers carries current, and is not tied to the presence of a gap in the density of states. In particular, we demonstrate this effect in models of gapless ABA-stacked trilayer graphene, gapped ABC-stacked trilayer graphene and gapped bilayer graphene.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Classic and Quantum Capacitances in Bernal Bilayer and Trilayer Graphene Field Effect Transistor
    Sadeghi, Hatef
    Lai, Daniel T. H.
    Redoute, Jean-Michel
    Zayegh, Aladin
    JOURNAL OF NANOMATERIALS, 2013, 2013
  • [2] Quantum Hall effect in bilayer and trilayer graphene
    Cobaleda, C.
    Rossella, F.
    Pezzini, S.
    Diez, E.
    Bellani, V.
    Maude, D. K.
    Blake, P.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 6, 2012, 9 (06): : 1411 - 1414
  • [3] Design of bilayer graphene nanoribbon tunnel field effect transistor
    Vobulapuram, Ramesh Kumar
    Shaik, Javid Basha
    Venkatramana, P.
    Mekala, Durga Prasad
    Lingayath, Ujwala
    CIRCUIT WORLD, 2023, 49 (02) : 174 - 179
  • [4] Device model for graphene bilayer field-effect transistor
    Ryzhii, V.
    Ryzhii, M.
    Satou, A.
    Otsuji, T.
    Kirova, N.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (10)
  • [5] Carrier Velocity in High-Field Transport of Trilayer Graphene Nanoribbon Field Effect Transistor
    Rahmani, Meisam
    Ismail, Razali
    Ahmadi, Mohammad Taghi
    Kiani, Mohammad Javad
    Rahmani, Komeil
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (04) : 633 - 639
  • [6] Quantum Hall effect in monolayer, bilayer and trilayer graphene
    Cobaleda, C.
    Diez, E.
    Amado, M.
    Pezzini, S.
    Rossella, F.
    Bellani, V.
    Lopez-Romero, D.
    Maude, D. K.
    20TH INTERNATIONAL CONFERENCE ON THE APPLICATION OF HIGH MAGNETIC FIELDS IN SEMICONDUCTOR PHYSICS (HMF-20), 2013, 456
  • [7] Effect of "Mexican Hat" on Graphene Bilayer Field-Effect Transistor Characteristics
    Svintsov, Dmitry
    Vyurkov, Vladimir
    Ryzhii, Victor
    Otsuji, Taiichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (07)
  • [8] Bandgap Engineering of Bilayer Graphene for Field-Effect Transistor Channels
    Sano, Eiichi
    Otsuji, Taiichi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (09) : 0916051 - 0916053
  • [9] Bilayer Graphene Field Effect Transistor Modelling with Improved Mobility Analysis
    Dusi, Sai Akash
    Sundari, B. Bala Tripura
    2021 IEEE INTERNATIONAL SYMPOSIUM ON SMART ELECTRONIC SYSTEMS (ISES 2021), 2021, : 135 - 138
  • [10] Lipid bilayer on wrinkled-interfaced graphene field effect transistor
    Inanc, Dilce Ozkendir
    Celebi, Cem
    Yildiz, Umit Hakan
    MATERIALS LETTERS, 2021, 284