Plug-in marginal estimation under a general regression model with missing responses and covariates

被引:3
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [3 ,4 ]
Gonzalez-Manteiga, Wenceslao [5 ]
Perez-Gonzalez, Ana [6 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[5] Univ Santiago de Compostela, Fac Math, Fac Matemat, Dept Estat Anal Matemat & Optimizac, Campus Sur, Santiago De Compostela 15706, Spain
[6] Univ Vigo, Dept Estadist & Invest Operat, Campus Orense,Campus Univ As Lagoas S-N, Orense 32004, Spain
关键词
Fisher consistency; Kernel weights; L-estimators; Marginal functionals; Missing at random; Semiparametric models; NONPARAMETRIC-ESTIMATION; EFFICIENT ESTIMATION; INFERENCE; QUANTILES; FUNCTIONALS;
D O I
10.1007/s11749-018-0591-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any -quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
引用
收藏
页码:106 / 146
页数:41
相关论文
共 50 条
  • [41] Nonparametric estimation of regression level sets using kernel plug-in estimator
    T. Laloë
    R. Servien
    Journal of the Korean Statistical Society, 2013, 42 : 301 - 311
  • [42] Model selection for zero-inflated regression with missing covariates
    Chen, Xue-Dong
    Fu, Ying-Zi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 765 - 773
  • [43] Model averaging for multiple quantile regression with covariates missing at random
    Ding, Xianwen
    Xie, Jinhan
    Yan, Xiaodong
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (11) : 2249 - 2275
  • [44] Bayesian variable selection for the Cox regression model with missing covariates
    Ibrahim, Joseph G.
    Chen, Ming-Hui
    Kim, Sungduk
    LIFETIME DATA ANALYSIS, 2008, 14 (04) : 496 - 520
  • [45] Variable Selection in the Cox Regression Model with Covariates Missing at Random
    Garcia, Ramon I.
    Ibrahim, Joseph G.
    Zhu, Hongtu
    BIOMETRICS, 2010, 66 (01) : 97 - 104
  • [46] Efficient parameter estimation in regression with missing responses
    Mueller, Ursula U.
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1200 - 1219
  • [47] Pretest and shrinkage estimation of the regression parameter vector of the marginal model with multinomial responses
    Marwan Al-Momani
    M. Riaz
    M. F. Saleh
    Statistical Papers, 2023, 64 : 2101 - 2117
  • [48] Pretest and shrinkage estimation of the regression parameter vector of the marginal model with multinomial responses
    Al-Momani, Marwan
    Riaz, M.
    Saleh, M. F.
    STATISTICAL PAPERS, 2023, 64 (06) : 2101 - 2117
  • [49] Weighted quantile average estimation for general linear models with missing covariates
    Sun, Jing
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (17) : 8706 - 8722
  • [50] A Bayesian Structural Equations Model for Multilevel Data with Missing Responses and Missing Covariates
    Das, Sonali
    Chen, Ming-Hui
    Kim, Sungduk
    Warren, Nicholas
    BAYESIAN ANALYSIS, 2008, 3 (01): : 197 - 224