Plug-in marginal estimation under a general regression model with missing responses and covariates

被引:3
|
作者
Bianco, Ana M. [1 ,2 ]
Boente, Graciela [3 ,4 ]
Gonzalez-Manteiga, Wenceslao [5 ]
Perez-Gonzalez, Ana [6 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[4] Consejo Nacl Invest Cient & Tecn, IMAS, Ciudad Univ,Pabellon 1, RA-1428 Buenos Aires, DF, Argentina
[5] Univ Santiago de Compostela, Fac Math, Fac Matemat, Dept Estat Anal Matemat & Optimizac, Campus Sur, Santiago De Compostela 15706, Spain
[6] Univ Vigo, Dept Estadist & Invest Operat, Campus Orense,Campus Univ As Lagoas S-N, Orense 32004, Spain
关键词
Fisher consistency; Kernel weights; L-estimators; Marginal functionals; Missing at random; Semiparametric models; NONPARAMETRIC-ESTIMATION; EFFICIENT ESTIMATION; INFERENCE; QUANTILES; FUNCTIONALS;
D O I
10.1007/s11749-018-0591-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any -quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.
引用
收藏
页码:106 / 146
页数:41
相关论文
共 50 条
  • [31] Estimation and test procedures for composite quantile regression with covariates missing at random
    Ning, Zijun
    Tang, Linjun
    STATISTICS & PROBABILITY LETTERS, 2014, 95 : 15 - 25
  • [32] Sieve maximum likelihood estimation for regression models with covariates missing at random
    Chen, Qingxia
    Zeng, Donglin
    Ibrahim, Joseph G.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1309 - 1317
  • [33] Robust location estimators in regression models with covariates and responses missing at random
    Bianco, Ana M.
    Boente, Graciela
    Gonzalez-Manteiga, Wenceslao
    Perez-Gonzalez, Ana
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 915 - 939
  • [34] Estimation of zero-inflated proportional odds regression with missing covariates
    Lee, Shen-Ming
    Li, Chin-Shang
    STATISTICA NEERLANDICA, 2025, 79 (01)
  • [35] Estimation of zero-inflated bivariate Poisson regression with missing covariates
    Kouakou, Konan Jean Geoffroy
    Hili, Ouagnina
    Dupuy, Jean-Francois
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (20) : 7216 - 7243
  • [36] Nonparametric estimation of regression level sets using kernel plug-in estimator
    Laloe, T.
    Servien, R.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (03) : 301 - 311
  • [37] Efficient estimation for the multivariate Cox model with missing covariates
    Cho, Youngjoo
    Kim, Soyoung
    Ahn, Kwang Woo
    STATISTICA NEERLANDICA, 2025, 79 (01)
  • [38] Model validation and influence diagnostics for regression models with missing covariates
    Bernhardt, Paul W.
    STATISTICS IN MEDICINE, 2018, 37 (08) : 1325 - 1342
  • [39] Bayesian variable selection for the Cox regression model with missing covariates
    Joseph G. Ibrahim
    Ming-Hui Chen
    Sungduk Kim
    Lifetime Data Analysis, 2008, 14 : 496 - 520
  • [40] Cox regression model with mismeasured covariates or missing covariate data
    Zhong, M
    Sen, PK
    Cai, JW
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 323 - 328