Understanding and Predicting Travel Time with Spatio-Temporal Features of Network Traffic Flow, Weather and Incidents

被引:37
|
作者
Yang, Shuguan [1 ]
Qian, Sean [1 ]
机构
[1] Carnegie Mellon Univ, Dept Civil & Environm Engn, 500 Forbes Ave, Pittsburgh, PA 15213 USA
基金
美国安德鲁·梅隆基金会;
关键词
REAL-TIME; MODELS;
D O I
10.1109/MITS.2019.2919615
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Travel time on a route varies substantially by time of day and from day to day. It is critical to understand to what extent this variation is correlated with various factors, such as weather, incidents, events or travel demand level in the context of dynamic networks. This helps a better decision making for infrastructure planning and real-time traffic operation. We propose a data-driven approach to understand and predict highway travel time using spatio-temporal features of those factors, all of which are acquired from multiple data sources. The prediction model holistically selects the most related features from a highdimensional feature space by correlation analysis, principle component analysis and LASSO. We test and compare the performance of several regression models in predicting travel time 30 min in advance via two case studies: (1) a 6-mile highway corridor of I-270N in D.C. region, and (2) a 2.3-mile corridor of I-376E in Pittsburgh region. We found that some bottlenecks scattered in the network can imply congestion on those corridors at least 30 minutes in advance, including those on the alternative route to the corridors of study. In addition, real-time travel time is statistically related to incidents on some specific locations, morning/ afternoon travel demand, visibility, precipitation, wind speed/gust and the weather type. All those spatiotemporal information together help improve prediction accuracy, comparing to using only speed data. In both case studies, random forest shows the most promise, reaching a root-mean-squared error of 16.6% and 17.0% respectively in afternoon peak hours for the entire year of 2014.
引用
收藏
页码:12 / 28
页数:17
相关论文
共 50 条
  • [21] Multi-scale Spatio-temporal Attention Network for Traffic Flow Prediction
    Li, Minghao
    Li, Jinhong
    Ta, Xuxiang
    Bai, Yanbo
    Hao, Xinzhe
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 294 - 305
  • [22] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225
  • [23] KNN spatio-temporal attention graph convolutional network for traffic flow repairing
    Zhang Xijun
    Li Zhe
    The Journal of China Universities of Posts and Telecommunications, 2025, 32 (01) : 48 - 60
  • [24] SPATIO-TEMPORAL GRAPH-TCN NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [25] Deep spatio-temporal dependent convolutional LSTM network for traffic flow prediction
    Tang, Jie
    Zhu, Rong
    Wu, Fengyun
    He, Xuansen
    Huang, Jing
    Zhou, Xianlai
    Sun, Yishuai
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Spatio-Temporal Graph-TCN Neural Network for Traffic Flow Prediction
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022, 2022,
  • [27] MSSTN: a multi-scale spatio-temporal network for traffic flow prediction
    Song, Yun
    Bai, Xinke
    Fan, Wendong
    Deng, Zelin
    Jiang, Cong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2827 - 2841
  • [28] GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction
    Luo, Yong
    Zheng, Jianying
    Wang, Xiang
    Tao, Yanyun
    Jiang, Xingxing
    NEURAL NETWORKS, 2024, 171 : 251 - 262
  • [29] Spatio-Temporal Traffic Flow Forecasting on a City-Wide Sensor Network
    Kunde, Felix
    Hartenstein, Alexander
    Sauer, Petra
    DYNAMICS IN GISCIENCE, 2018, : 253 - 265
  • [30] Predicting Road Accidents Based on Current and Historical Spatio-temporal Traffic Flow Data
    Jagannathan, Rupa
    Petrovic, Sanja
    Powell, Gavin
    Roberts, Matthew
    COMPUTATIONAL LOGISTICS, ICCL 2013, 2013, 8197 : 83 - 97