Multi-scale Spatio-temporal Attention Network for Traffic Flow Prediction

被引:0
|
作者
Li, Minghao [1 ]
Li, Jinhong [1 ]
Ta, Xuxiang [2 ]
Bai, Yanbo [3 ]
Hao, Xinzhe [1 ]
机构
[1] North China Univ Technol, Sch Informat, Beijing 100144, Peoples R China
[2] Beihang Univ, Natl Lab Software Dev Environm, Beijing 100083, Peoples R China
[3] Liaoning Tech Univ, Sch Elect & Informat Engn, Huludao 125000, Peoples R China
关键词
Traffic Flow Prediction; Multi-scale Attention Graph Neural Networks; Pyramidal Temporal Network;
D O I
10.1007/978-981-97-5666-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow prediction has important implications for multiple fields, such as urban planning, traffic management and transportation. Accurate Traffic flow prediction helps improve transportation efficiency. At the same time, getting accurate traffic conditions can ensure traffic safety during special times. The key to accurate traffic flow prediction lies in the ability to accurately mine temporal and spatial dependencies, i.e., information on cycles and trends contained in historical time series and correlations between different locations in space. In recent years, a variety of algorithms have been used for traffic flow prediction, but all of them have their own limitations that lead to less accurate predictions in some cases. In this paper, we propose a multi-scale attention graph neural network model for traffic flow prediction, which captures multi-scale spatial dependencies through a multi-scale graph neural network. And a Pyramidal temporal network model is also proposed for mining temporal dependencies progressively from global to local. To validate our proposed method, we conduct extensive experiments on real-world traffic datasets to verify the effectiveness of our method.
引用
收藏
页码:294 / 305
页数:12
相关论文
共 50 条
  • [1] MSSTN: a multi-scale spatio-temporal network for traffic flow prediction
    Song, Yun
    Bai, Xinke
    Fan, Wendong
    Deng, Zelin
    Jiang, Cong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2827 - 2841
  • [2] Multi-Scale Spatio-Temporal Attention Networks for Network-Scale Traffic Learning and Forecasting
    Wu, Cong
    Ding, Hui
    Fu, Zhongwang
    Sun, Ning
    SENSORS, 2024, 24 (17)
  • [3] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [4] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238
  • [5] Multi-scale feature enhanced spatio-temporal learning for traffic flow forecasting
    Du, Shengdong
    Yang, Tao
    Teng, Fei
    Zhang, Junbo
    Li, Tianrui
    Zheng, Yu
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [6] Spatio-temporal Multi-scale Pedestrian Flow Model by using Attention Module
    Sakurai, Akihiro
    Yamamoto, Ko
    2024 33RD IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, ROMAN 2024, 2024, : 1842 - 1847
  • [7] Spatio-Temporal Traffic Flow Prediction Based on Coordinated Attention
    Li, Min
    Li, Mengshan
    Liu, Bilong
    Liu, Jiang
    Liu, Zhen
    Luo, Dijia
    SUSTAINABILITY, 2022, 14 (12)
  • [8] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Hui Zeng
    Zhiying Peng
    XiaoHui Huang
    Yixue Yang
    Rong Hu
    Applied Intelligence, 2022, 52 : 10285 - 10296
  • [9] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Zeng, Hui
    Peng, Zhiying
    Huang, XiaoHui
    Yang, Yixue
    Hu, Rong
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10285 - 10296
  • [10] Spatio-Temporal Memory Augmented Multi-Level Attention Network for Traffic Prediction
    Liu, Yan
    Guo, Bin
    Meng, Jingxiang
    Zhang, Daqing
    Yu, Zhiwen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (06) : 2643 - 2658