On the first eigenvalue of a fourth order Steklov problem

被引:38
|
作者
Bucur, Dorin [2 ]
Ferrero, Alberto [3 ]
Gazzola, Filippo [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Savoie, CNRS, UMR 5127, Math Lab, F-73376 Le Bourget Du Lac, France
[3] Univ Milan, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
COUPLED EQUATION APPROACH; BIHARMONIC EQUATION; BOUNDARY-CONDITIONS; NUMERICAL SOLUTION; FINITE DIFFERENCES; DOMAINS; POSITIVITY; OPERATOR;
D O I
10.1007/s00526-008-0199-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some results about the first Steklov eigenvalue d (1) of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality (Fichera in Atti Accad Naz Lincei 19:411-418, 1955) may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d (1) for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.
引用
收藏
页码:103 / 131
页数:29
相关论文
共 50 条
  • [21] The Steklov eigenvalue problem in a cuspidal domain
    Armentano, Maria G.
    Lombardi, Ariel L.
    NUMERISCHE MATHEMATIK, 2020, 144 (02) : 237 - 270
  • [22] Integrability of the Reduction Fourth-Order Eigenvalue Problem
    Wang, Shuhong
    Liu, Wei
    Yuan, Shujuan
    JOURNAL OF COMPUTERS, 2012, 7 (09) : 2128 - 2135
  • [23] An HDG method for the Steklov eigenvalue problem
    Monk, Peter
    Zhang, Yangwen
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 1929 - 1962
  • [24] Extrapolation and superconvergence of the Steklov eigenvalue problem
    Li, Mingxia
    Lin, Qun
    Zhang, Shuhua
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (01) : 25 - 44
  • [25] The Steklov eigenvalue problem in a cuspidal domain
    María G. Armentano
    Ariel L. Lombardi
    Numerische Mathematik, 2020, 144 : 237 - 270
  • [26] Manifolds with Density and the First Steklov Eigenvalue
    Márcio Batista
    José I. Santos
    Potential Analysis, 2024, 60 : 1369 - 1382
  • [27] A Reilly inequality for the first Steklov eigenvalue
    Ilias, Said
    Makhoul, Ola
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (05) : 699 - 708
  • [28] An isoperimetric inequality and the first Steklov eigenvalue
    Escobar, JF
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 165 (01) : 101 - 116
  • [29] Manifolds with Density and the First Steklov Eigenvalue
    Batista, Marcio
    Santos, Jose I.
    POTENTIAL ANALYSIS, 2024, 60 (04) : 1369 - 1382
  • [30] Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates
    Yan Zhao
    Chuanxi Wu
    Jing Mao
    Feng Du
    Revista Matemática Complutense, 2020, 33 : 389 - 414