On the first eigenvalue of a fourth order Steklov problem

被引:38
|
作者
Bucur, Dorin [2 ]
Ferrero, Alberto [3 ]
Gazzola, Filippo [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Savoie, CNRS, UMR 5127, Math Lab, F-73376 Le Bourget Du Lac, France
[3] Univ Milan, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
COUPLED EQUATION APPROACH; BIHARMONIC EQUATION; BOUNDARY-CONDITIONS; NUMERICAL SOLUTION; FINITE DIFFERENCES; DOMAINS; POSITIVITY; OPERATOR;
D O I
10.1007/s00526-008-0199-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some results about the first Steklov eigenvalue d (1) of the biharmonic operator in bounded domains. Firstly, we show that Fichera's principle of duality (Fichera in Atti Accad Naz Lincei 19:411-418, 1955) may be extended to a wide class of nonsmooth domains. Next, we study the optimization of d (1) for varying domains: we disprove a long-standing conjecture, we show some new and unexpected features and we suggest some challenging problems. Finally, we prove several properties of the ball.
引用
收藏
页码:103 / 131
页数:29
相关论文
共 50 条