Exponential stability of nonlinear infinite-dimensional systems: Application to nonisothermal axial dispersion tubular reactors

被引:7
|
作者
Hastir, Anthony [1 ,2 ]
Winkin, Joseph J. [1 ,2 ]
Dochain, Denis [3 ]
机构
[1] Univ Namur, Dept Math, Rempart de la Vierge 8, B-5000 Namur, Belgium
[2] Univ Namur, Namur Inst Complex Syst naXys, Rempart de la Vierge 8, B-5000 Namur, Belgium
[3] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, Ave Georges Lemaitre 4-6, B-1348 Louvain La Neuve, Belgium
关键词
Nonlinear distributed parameter systems; Frechet/Gateaux derivatives; Equilibrium profiles; Nonisothermal axial dispersion tubular reactor; Bistability; LINEARIZED STABILITY; DYNAMICAL ANALYSIS; EQUATIONS;
D O I
10.1016/j.automatica.2020.109201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential stability of equilibria of nonlinear distributed parameter systems is considered. A general framework is set with related assumptions. In particular it is shown how to get local exponential stability of an equilibrium profile for the corresponding nonlinear system based on stability results for the linearized one. For this purpose a weakened concept of Frechet differentiability is required for the nonlinear semigroup generated by the nonlinear model, with links to Al Jamal and Morris (2018). The theoretical results are applied to a nonisothermal axial dispersion tubular reactor model and are illustrated with numerical simulations. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Control of Hopf bifurcations for infinite-dimensional nonlinear systems
    Xiao, MQ
    Kang, W
    NEW TRENDS IN NONLINEAR DYNAMICS AND CONTROL, AND THEIR APPLICATIONS, 2003, 295 : 101 - 116
  • [42] Adaptive output tracking for nonlinear infinite-dimensional systems
    Hastir, A.
    Winkin, J. J.
    Dochain, D.
    IFAC PAPERSONLINE, 2022, 55 (26): : 39 - 46
  • [43] Funnel control for a class of nonlinear infinite-dimensional systems
    Hastir, Anthony
    Winkin, Joseph J.
    Dochain, Denis
    AUTOMATICA, 2023, 152
  • [44] STABILITY BY LINEAR-APPROXIMATION IN THE INFINITE-DIMENSIONAL SYSTEMS
    SEROVAISKII, SY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1992, (08): : 57 - 64
  • [45] Stability of infinite-dimensional sampled-data systems
    Logemann, H
    Rebarber, R
    Townley, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (08) : 3301 - 3328
  • [46] Stability and stabilizability for infinite-dimensional conformable semilinear systems
    Ennouari, Toufik
    Abouzaid, Bouchra
    Achhab, Mohammed Elarbi
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2025, 13 (01)
  • [47] On robust stability of positive infinite-dimensional linear systems
    Fischer, A
    SYSTEM STRUCTURE AND CONTROL 1997, 1998, : 467 - 472
  • [48] Input-to-state stability for infinite-dimensional systems
    Birgit Jacob
    Andrii Mironchenko
    Felix Schwenninger
    Mathematics of Control, Signals, and Systems, 2022, 34 : 215 - 216
  • [49] Input-to-state stability for infinite-dimensional systems
    Jacob, Birgit
    Mironchenko, Andrii
    Schwenninger, Felix
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2022, 34 (01) : 215 - 216
  • [50] Stability of Global Attractors of Impulsive Infinite-Dimensional Systems
    Kapustyan, O. V.
    Perestyuk, M. O.
    Romanyuk, I. V.
    UKRAINIAN MATHEMATICAL JOURNAL, 2018, 70 (01) : 30 - 41