Exponential stability of nonlinear infinite-dimensional systems: Application to nonisothermal axial dispersion tubular reactors

被引:7
|
作者
Hastir, Anthony [1 ,2 ]
Winkin, Joseph J. [1 ,2 ]
Dochain, Denis [3 ]
机构
[1] Univ Namur, Dept Math, Rempart de la Vierge 8, B-5000 Namur, Belgium
[2] Univ Namur, Namur Inst Complex Syst naXys, Rempart de la Vierge 8, B-5000 Namur, Belgium
[3] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, Ave Georges Lemaitre 4-6, B-1348 Louvain La Neuve, Belgium
关键词
Nonlinear distributed parameter systems; Frechet/Gateaux derivatives; Equilibrium profiles; Nonisothermal axial dispersion tubular reactor; Bistability; LINEARIZED STABILITY; DYNAMICAL ANALYSIS; EQUATIONS;
D O I
10.1016/j.automatica.2020.109201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential stability of equilibria of nonlinear distributed parameter systems is considered. A general framework is set with related assumptions. In particular it is shown how to get local exponential stability of an equilibrium profile for the corresponding nonlinear system based on stability results for the linearized one. For this purpose a weakened concept of Frechet differentiability is required for the nonlinear semigroup generated by the nonlinear model, with links to Al Jamal and Morris (2018). The theoretical results are applied to a nonisothermal axial dispersion tubular reactor model and are illustrated with numerical simulations. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Robust stability of linear infinite-dimensional systems
    Bobylev, NA
    Bulatov, AV
    AUTOMATION AND REMOTE CONTROL, 1999, 60 (05) : 628 - 638
  • [32] Input-to-state practical stability for nonautonomous nonlinear infinite-dimensional systems
    Damak, Hanen
    Hammami, Mohamed Ali
    Heni, Rahma
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (10) : 5834 - 5847
  • [33] Stability radii of infinite-dimensional positive systems
    Andreas Fischer
    Mathematics of Control, Signals and Systems, 1997, 10 : 223 - 236
  • [34] Stability radii of infinite-dimensional positive systems
    Fischer, A
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1997, 10 (03) : 223 - 236
  • [35] Approximate Optimal Control and Stability of Nonlinear Finite- and Infinite-Dimensional Systems
    S.P. Banks
    K. Dinesh
    Annals of Operations Research, 2000, 98 : 19 - 44
  • [36] Approximate optimal control and stability of nonlinear finite- and infinite-dimensional systems
    Banks, SP
    Dinesh, K
    ANNALS OF OPERATIONS RESEARCH, 2000, 98 (1-4) : 19 - 44
  • [37] Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation
    Efendiev, M
    Miranville, A
    Zelik, S
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 460 (2044): : 1107 - 1129
  • [38] Dynamical analysis of a tubular biochemical reactor infinite-dimensional nonlinear model
    Laabissi, M.
    Winkin, J. J.
    Dochain, D.
    Achhab, M. E.
    2005 44th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, 2005, : 5965 - 5970
  • [39] EXPONENTIAL STABILITY OF INFINITE DIMENSIONAL LINEAR SYSTEMS
    Shin, Chang Eon
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (03): : 603 - 611
  • [40] Local Decomposition and Accessibility of Nonlinear Infinite-Dimensional Systems
    Rams, Hubert
    Schoeberl, Markus
    Schlacher, Kurt
    IFAC PAPERSONLINE, 2016, 49 (08): : 168 - 173