Exponential stability of nonlinear infinite-dimensional systems: Application to nonisothermal axial dispersion tubular reactors

被引:7
|
作者
Hastir, Anthony [1 ,2 ]
Winkin, Joseph J. [1 ,2 ]
Dochain, Denis [3 ]
机构
[1] Univ Namur, Dept Math, Rempart de la Vierge 8, B-5000 Namur, Belgium
[2] Univ Namur, Namur Inst Complex Syst naXys, Rempart de la Vierge 8, B-5000 Namur, Belgium
[3] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math, Ave Georges Lemaitre 4-6, B-1348 Louvain La Neuve, Belgium
关键词
Nonlinear distributed parameter systems; Frechet/Gateaux derivatives; Equilibrium profiles; Nonisothermal axial dispersion tubular reactor; Bistability; LINEARIZED STABILITY; DYNAMICAL ANALYSIS; EQUATIONS;
D O I
10.1016/j.automatica.2020.109201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Exponential stability of equilibria of nonlinear distributed parameter systems is considered. A general framework is set with related assumptions. In particular it is shown how to get local exponential stability of an equilibrium profile for the corresponding nonlinear system based on stability results for the linearized one. For this purpose a weakened concept of Frechet differentiability is required for the nonlinear semigroup generated by the nonlinear model, with links to Al Jamal and Morris (2018). The theoretical results are applied to a nonisothermal axial dispersion tubular reactor model and are illustrated with numerical simulations. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] On Exponential Bistability of Equilibrium Profiles of Nonisothermal Axial Dispersion Tubular Reactors
    Hastir, Anthony
    Winkin, Joseph J.
    Dochain, Denis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (07) : 3235 - 3242
  • [2] Asymptotic stability of infinite-dimensional semilinear systems: Application to a nonisothermal reactor
    Aksikas, Ilyasse
    Winkin, Joseph J.
    Dochain, Denis
    SYSTEMS & CONTROL LETTERS, 2007, 56 (02) : 122 - 132
  • [3] On Local Stability of Equilibrium Profiles of Nonisothermal Axial Dispersion Tubular Reactors
    Hastir, A.
    Winkin, J. J.
    Dochain, D.
    IFAC PAPERSONLINE, 2020, 53 (02): : 5315 - 5321
  • [4] Lyapunov Characterization of Uniform Exponential Stability for Nonlinear Infinite-Dimensional Systems
    Haidar, Ihab
    Chitour, Yacine
    Mason, Paolo
    Sigalotti, Mario
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) : 1685 - 1697
  • [5] Local exponential stabilization of nonlinear infinite-dimensional systems
    Hastir, Anthony
    Winkin, Joseph J.
    Dochain, Denis
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4038 - 4045
  • [6] EQUIVALENCE OF INPUT OUTPUT STABILITY AND EXPONENTIAL STABILITY FOR INFINITE-DIMENSIONAL SYSTEMS
    CURTAIN, RF
    MATHEMATICAL SYSTEMS THEORY, 1988, 21 (01): : 19 - 48
  • [7] Exact observability and exponential stability of infinite-dimensional bilinear systems
    Xu, CZ
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (01) : 73 - 93
  • [8] Stability of Infinite-Dimensional Systems
    I. G. Ismailov
    Automation and Remote Control, 2002, 63 : 1565 - 1572
  • [9] Stability of infinite-dimensional systems
    Ismailov, IG
    AUTOMATION AND REMOTE CONTROL, 2002, 63 (10) : 1565 - 1572
  • [10] Analysis of the Existence of Equilibrium Profiles in Nonisothermal Axial Dispersion Tubular Reactors
    Hastir, Anthony
    Lamoline, Francois
    Winkin, Joseph J.
    Dochain, Denis
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1525 - 1536