OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps

被引:12
|
作者
Zhou, Xiaozhu [1 ,2 ,3 ]
Shade, Chad M. [1 ]
Schmucker, Abrin L. [1 ]
Brown, Keith A. [2 ]
He, Shu [1 ]
Boey, Freddy [3 ]
Ma, Jan [3 ]
Zhang, Hua [3 ]
Mirkin, Chad A. [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
关键词
Graphene; nanogap; nanoribbon; on-wire lithography; silicon nanostructure; ON-WIRE LITHOGRAPHY; MEMBRANE; NANOMESH;
D O I
10.1021/nl302171z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.
引用
收藏
页码:4734 / 4737
页数:4
相关论文
共 50 条
  • [31] Deterministic Deposition of Nanoparticles with Sub-10 nm Resolution
    Fringes, Stefan
    Schwemmer, C.
    Rawlings, Colin D.
    Knoll, Armin W.
    NANO LETTERS, 2019, 19 (12) : 8855 - 8861
  • [32] Laser Ablation of Sub-10 nm Silver Nanoparticles
    Zinovev, Alexander
    Moore, Jerome F.
    Baryshev, Sergey V.
    Schultz, J. Albert
    Lewis, Ernest
    Brinson, Bruce
    McCully, Michael
    Pellin, Michael
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (17): : 9552 - 9559
  • [33] Effects of Fin shape on sub-10 nm FinFETs
    Zhihao Yu
    Sheng Chang
    Hao Wang
    Jin He
    Qijun Huang
    Journal of Computational Electronics, 2015, 14 : 515 - 523
  • [34] CMOS scaling toward sub-10 nm regime
    Iwai, H
    EDMO2003: 11TH IEEE INTERNATIONAL SYMPOSIUM ON ELECTRON DEVICES FOR MICROWAVE AND OPTOELECTRONIC APPLICATIONS, 2003, : 30 - 34
  • [35] Effects of Fin shape on sub-10 nm FinFETs
    Yu, Zhihao
    Chang, Sheng
    Wang, Hao
    He, Jin
    Huang, Qijun
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (02) : 515 - 523
  • [36] Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation
    Jiaxin Zheng
    Lu Wang
    Ruge Quhe
    Qihang Liu
    Hong Li
    Dapeng Yu
    Wai-Ning Mei
    Junjie Shi
    Zhengxiang Gao
    Jing Lu
    Scientific Reports, 3
  • [37] Sub-10 nm Nanoimprint Lithography by Wafer Bowing
    Wu, Wei
    Tong, William M.
    Bartman, Jonathan
    Chen, Yufeng
    Walmsley, Robert
    Yu, Zhaoning
    Xia, Qiangfei
    Park, Inkyu
    Picciotto, Carl
    Gao, Jun
    Wang, Shih-Yuan
    Morecroft, Deborah
    Yang, Joel
    Berggren, Karl K.
    Williams, R. Stanley
    NANO LETTERS, 2008, 8 (11) : 3865 - 3869
  • [38] Metal Double Layers with Sub-10 nm Channels
    Siegfried, Thomas
    Wang, Li
    Ekinci, Yasin
    Martin, Olivier J. F.
    Sigg, Hans
    ACS NANO, 2014, 8 (04) : 3700 - 3706
  • [39] Coplanar Waveguides with Sub-10 nm Gold Films
    He, Yuxi
    Wang, Shenghan
    Divan, Ralu
    Rosenmann, Daniel
    Wang, Pingshan
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,
  • [40] Plasmonic Chiral Metamaterials with Sub-10 nm Nanogaps
    Zhang, Wei
    Ai, Bin
    Gu, Panpan
    Guan, Yuduo
    Wang, Zengyao
    Xiao, Zifan
    Zhang, Gang
    ACS NANO, 2021, 15 (11) : 17657 - 17667