Data-Driven Equation Discovery of Ocean Mesoscale Closures

被引:122
|
作者
Zanna, Laure [1 ,2 ]
Bolton, Thomas [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[2] Univ Oxford, Dept Phys, Oxford, England
关键词
climate modeling</AUTHOR_KEYWORD>; machine learning</AUTHOR_KEYWORD>; ocean turbulence</AUTHOR_KEYWORD>; subgrid parameterization</AUTHOR_KEYWORD>; EDDY; PARAMETERIZATION; PARAMETRIZATION; BACKSCATTER; FRAMEWORK; MODEL;
D O I
10.1029/2020GL088376
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The resolution of climate models is limited by computational cost. Therefore, we must rely on parameterizations to represent processes occurring below the scale resolved by the models. Here, we focus on parameterizations of ocean mesoscale eddies and employ machine learning (ML), namely, relevance vector machines (RVMs) and convolutional neural networks (CNNs), to derive computationally efficient parameterizations from data, which are interpretable and/or encapsulate physics. In particular, we demonstrate the usefulness of the RVM algorithm to reveal closed-form equations for eddy parameterizations with embedded conservation laws. When implemented in an idealized ocean model, all parameterizations improve the statistics of the coarse-resolution simulation. The CNN is more stable than the RVM such that its skill in reproducing the high-resolution simulation is higher than the other schemes; however, the RVM scheme is interpretable. This work shows the potential for new physics-aware interpretable ML turbulence parameterizations for use in ocean climate models.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A Review of Data-Driven Discovery for Dynamic Systems
    North, Joshua S.
    Wikle, Christopher K.
    Schliep, Erin M.
    INTERNATIONAL STATISTICAL REVIEW, 2023, 91 (03) : 464 - 492
  • [42] Data-Driven Discovery of Immune Contexture Biomarkers
    Schwen, Lars Ole
    Andersson, Emilia
    Korski, Konstanty
    Weiss, Nick
    Haase, Sabrina
    Gaire, Fabien
    Hahn, Horst K.
    Homeyer, Andre
    Grimm, Oliver
    FRONTIERS IN ONCOLOGY, 2018, 8
  • [43] Data-driven discovery of partial differential equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    SCIENCE ADVANCES, 2017, 3 (04):
  • [44] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [45] Data-Driven Domain Discovery for Structured Datasets
    Ota, Masayo
    Mueller, Heiko
    Freire, Juliana
    Srivastava, Divesh
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (07): : 953 - 965
  • [46] Opportunities and Challenges of Data-Driven Virus Discovery
    Lauber, Chris
    Seitz, Stefan
    BIOMOLECULES, 2022, 12 (08)
  • [47] Data-Driven Discovery of Active Nematic Hydrodynamics
    Joshi, Chaitanya
    Ray, Sattvic
    Lemma, Linnea M.
    Varghese, Minu
    Sharp, Graham
    Dogic, Zvonimir
    Baskaran, Aparna
    Hagan, Michael F.
    PHYSICAL REVIEW LETTERS, 2022, 129 (=256601)
  • [48] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    MRS Bulletin, 2019, 44 : 559 - 564
  • [49] Data-driven discovery of PDEs in complex datasets
    Berg, Jens
    Nystrom, Kaj
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 : 239 - 252
  • [50] Biomedical evidence engineering for data-driven discovery
    Zhao, Sendong
    Wang, Aobo
    Qin, Bing
    Wang, Fei
    BIOINFORMATICS, 2022, 38 (23) : 5270 - 5278