Data-Driven Equation Discovery of Ocean Mesoscale Closures

被引:122
|
作者
Zanna, Laure [1 ,2 ]
Bolton, Thomas [2 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[2] Univ Oxford, Dept Phys, Oxford, England
关键词
climate modeling</AUTHOR_KEYWORD>; machine learning</AUTHOR_KEYWORD>; ocean turbulence</AUTHOR_KEYWORD>; subgrid parameterization</AUTHOR_KEYWORD>; EDDY; PARAMETERIZATION; PARAMETRIZATION; BACKSCATTER; FRAMEWORK; MODEL;
D O I
10.1029/2020GL088376
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The resolution of climate models is limited by computational cost. Therefore, we must rely on parameterizations to represent processes occurring below the scale resolved by the models. Here, we focus on parameterizations of ocean mesoscale eddies and employ machine learning (ML), namely, relevance vector machines (RVMs) and convolutional neural networks (CNNs), to derive computationally efficient parameterizations from data, which are interpretable and/or encapsulate physics. In particular, we demonstrate the usefulness of the RVM algorithm to reveal closed-form equations for eddy parameterizations with embedded conservation laws. When implemented in an idealized ocean model, all parameterizations improve the statistics of the coarse-resolution simulation. The CNN is more stable than the RVM such that its skill in reproducing the high-resolution simulation is higher than the other schemes; however, the RVM scheme is interpretable. This work shows the potential for new physics-aware interpretable ML turbulence parameterizations for use in ocean climate models.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] IUGS' Initiative on Data-Driven Geoscience Discovery
    Qiuming Cheng
    Journal of Earth Science, 2021, 32 (02) : 468 - 470
  • [32] IUGS’ Initiative on Data-Driven Geoscience Discovery
    Qiuming Cheng
    Journal of Earth Science, 2021, 32 : 468 - 470
  • [33] Data-driven discovery of coordinates and governing equations
    Champion, Kathleen
    Lusch, Bethany
    Kutz, J. Nathan
    Brunton, Steven L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (45) : 22445 - 22451
  • [34] Data-driven discovery of Koopman eigenfunctions for control
    Kaiser, Eurika
    Kutz, J. Nathan
    Brunton, Steven L.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (03):
  • [35] Data-Driven Discovery of Stochastic Differential Equations
    Yasen Wang
    Huazhen Fang
    Junyang Jin
    Guijun Ma
    Xin He
    Xing Dai
    Zuogong Yue
    Cheng Cheng
    Hai-Tao Zhang
    Donglin Pu
    Dongrui Wu
    Ye Yuan
    Jorge Gon?alves
    Jürgen Kurths
    Han Ding
    Engineering, 2022, 17 (10) : 244 - 252
  • [36] Legislative Explorer: Data-Driven Discovery of Lawmaking
    Stramp, Nicholas
    Wilkerson, John
    PS-POLITICAL SCIENCE & POLITICS, 2015, 48 (01) : 115 - 119
  • [37] Data-Driven Discovery of Active Nematic Hydrodynamics
    Joshi, Chaitanya
    Ray, Sattvic
    Lemma, Linnea M.
    Varghese, Minu
    Sharp, Graham
    Dogic, Zvonimir
    Baskaran, Aparna
    Hagan, Michael F.
    PHYSICAL REVIEW LETTERS, 2022, 129 (25)
  • [38] Data-Driven Discovery of Stochastic Differential Equations
    Wang, Yasen
    Fang, Huazhen
    Jin, Junyang
    Ma, Guijun
    He, Xin
    Dai, Xing
    Yue, Zuogong
    Cheng, Cheng
    Zhang, Hai-Tao
    Pu, Donglin
    Wu, Dongrui
    Yuan, Ye
    Goncalves, Jorge
    Kurths, Juergen
    Ding, Han
    ENGINEERING, 2022, 17 : 244 - 252
  • [39] Paleontology Knowledge Graph for Data-Driven Discovery
    Yiying Deng
    Sicun Song
    Junxuan Fan
    Mao Luo
    Le Yao
    Shaochun Dong
    Yukun Shi
    Linna Zhang
    Yue Wang
    Haipeng Xu
    Huiqing Xu
    Yingying Zhao
    Zhaohui Pan
    Zhangshuai Hou
    Xiaoming Li
    Boheng Shen
    Xinran Chen
    Shuhan Zhang
    Xuejin Wu
    Lida Xing
    Qingqing Liang
    Enze Wang
    Journal of Earth Science, 2024, 35 (03) : 1024 - 1034
  • [40] IUGS' Initiative on Data-Driven Geoscience Discovery
    Cheng, Qiuming
    JOURNAL OF EARTH SCIENCE, 2021, 32 (02) : 468 - 470