McCoy modules and related modules over commutative rings

被引:14
|
作者
Anderson, D. D. [1 ]
Chun, Sangmin [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Arithmetical module; Armendariz module; dual McCoy module; Gaussian module; McCoy module; ARMENDARIZ RINGS;
D O I
10.1080/00927872.2016.1233218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a left R-module. Then M is a McCoy (resp., dual McCoy) module if for nonzero f (X) is an element of R[X] and m(X) is an element of M[X], f (X) m(X) = 0 implies there exists a nonzero r is an element of R (resp., m is an element of M) with rm(X) = 0 (resp., f (X) m = 0). We show that for R commutative every R-module is dual McCoy, but give an example of a non-McCoy module. A number of other results concerning (dual) McCoy modules as well as arithmetical, Gaussian, and Armendariz modules are given.
引用
收藏
页码:2593 / 2601
页数:9
相关论文
共 50 条