McCoy modules and related modules over commutative rings

被引:14
|
作者
Anderson, D. D. [1 ]
Chun, Sangmin [2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Seoul Natl Univ, Dept Math, Seoul 151747, South Korea
关键词
Arithmetical module; Armendariz module; dual McCoy module; Gaussian module; McCoy module; ARMENDARIZ RINGS;
D O I
10.1080/00927872.2016.1233218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a left R-module. Then M is a McCoy (resp., dual McCoy) module if for nonzero f (X) is an element of R[X] and m(X) is an element of M[X], f (X) m(X) = 0 implies there exists a nonzero r is an element of R (resp., m is an element of M) with rm(X) = 0 (resp., f (X) m = 0). We show that for R commutative every R-module is dual McCoy, but give an example of a non-McCoy module. A number of other results concerning (dual) McCoy modules as well as arithmetical, Gaussian, and Armendariz modules are given.
引用
收藏
页码:2593 / 2601
页数:9
相关论文
共 50 条
  • [21] CF-modules over commutative rings
    Najim, Ahmed
    Charkani, Mohammed Elhassani
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2018, 59 (01): : 25 - 34
  • [22] COMULTIPLICATION MODULES OVER COMMUTATIVE RINGS II
    Al-Shaniafi, Yousef
    Smith, Patrick F.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (02) : 153 - 174
  • [23] A scheme associated to modules over commutative rings
    Parsa, Mohammad Ali
    Moghimi, Hosein Fazaeli
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5289 - 5301
  • [24] ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS
    Pirzada, Shariefuddin
    Raja, Rameez
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) : 1167 - 1182
  • [25] Cotilting modules over commutative Noetherian rings
    Stovicek, Jan
    Trlifaj, Jan
    Herbera, Dolors
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (09) : 1696 - 1711
  • [26] The locally nilradical for modules over commutative rings
    Annet Kyomuhangi
    David Ssevviiri
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 759 - 769
  • [27] THE DIMENSION GRAPH FOR MODULES OVER COMMUTATIVE RINGS
    Payrovi, Shiroyeh
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (03): : 733 - 740
  • [28] w-MODULES OVER COMMUTATIVE RINGS
    Yin, Huayu
    Wang, Fanggui
    Zhu, Xiaosheng
    Chen, Youhua
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) : 207 - 222
  • [29] Linearity defects of modules over commutative rings
    Iyengar, Srikanth B.
    Roemer, Tim
    JOURNAL OF ALGEBRA, 2009, 322 (09) : 3212 - 3237
  • [30] ON WEAK ARMENDARIZ MODULES OVER COMMUTATIVE RINGS
    Shabani, M.
    Darani, A. Yousefian
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 581 - 590