The parameterised complexity of list problems on graphs of bounded treewidth

被引:4
|
作者
Meeks, Kitty [1 ,2 ]
Scott, Alexander [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Glasgow, Sch Math & Stat, 15 Univ Gardens, Glasgow G12 8QW, Lanark, Scotland
关键词
Parameterised complexity; Bounded treewidth; Graph colouring; List colouring; Hamilton path; NP-COMPLETENESS; CHROMATIC INDEX; TOTAL COLORINGS; EDGE;
D O I
10.1016/j.ic.2016.08.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the parameterised complexity of several list problems on graphs, with parameter treewidth or pathwidth. In particular, we show that LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by treewidth, whereas LIST HAMILTON PATH is W[1]-hard, even parameterised by pathwidth. These results resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen (2011). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [31] Equitable colorings of bounded treewidth graphs
    Bodlaender, HL
    Fomin, FV
    THEORETICAL COMPUTER SCIENCE, 2005, 349 (01) : 22 - 30
  • [32] Recognizing Map Graphs of Bounded Treewidth
    Angelini, Patrizio
    Bekos, Michael A.
    Da Lozzo, Giordano
    Gronemann, Martin
    Montecchiani, Fabrizio
    Tappini, Alessandra
    ALGORITHMICA, 2024, 86 (02) : 613 - 637
  • [33] Combinatorial optimization on graphs of bounded treewidth
    Bodlaender, Hans L.
    Koster, Arie M.C.A.
    Computer Journal, 2008, 51 (03): : 255 - 269
  • [34] Bisection of Bounded Treewidth Graphs by Convolutions
    Eiben, Eduard
    Lokshtanov, Daniel
    Mouawad, Amer E.
    27TH ANNUAL EUROPEAN SYMPOSIUM ON ALGORITHMS (ESA 2019), 2019, 144
  • [35] Improved Hardness of Maximum Common Subgraph Problems on Labeled Graphs of Bounded Treewidth and Bounded Degree
    Akutsu, Tatsuya
    Melkman, Avraham A.
    Tamura, Takeyuki
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (02) : 253 - 273
  • [36] Complexity of the multicut problem, in its vanilla, partial and generalized versions, in graphs of bounded treewidth
    Bentz, Cedric
    Le Bodic, Pierre
    THEORETICAL COMPUTER SCIENCE, 2020, 809 (809) : 239 - 249
  • [37] Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs
    Okrasa, Karolina
    Rzazewski, Pawel
    PROCEEDINGS OF THE THIRTY-FIRST ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA'20), 2020, : 1578 - 1590
  • [38] Fine-grained complexity of graph homomorphism problem for bounded-treewidth graphs
    Okrasa, Karolina
    Rzazewski, Pawel
    PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1578 - 1590
  • [39] Tight Complexity Bounds for Counting Generalized Dominating Sets in Bounded-Treewidth Graphs
    Focke, Jacob
    Marx, Daniel
    Mc Inerney, Fionn
    Neuen, Daniel
    Sankar, Govind S.
    Schepper, Philipp
    Wellnitz, Philip
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 3664 - 3683
  • [40] FINE-GRAINED COMPLEXITY OF THE GRAPH HOMOMORPHISM PROBLEM FOR BOUNDED-TREEWIDTH GRAPHS
    Okrasa, Karolina
    Rzazewski, Pawel
    SIAM JOURNAL ON COMPUTING, 2021, 50 (02) : 487 - 508