The parameterised complexity of list problems on graphs of bounded treewidth

被引:4
|
作者
Meeks, Kitty [1 ,2 ]
Scott, Alexander [1 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Glasgow, Sch Math & Stat, 15 Univ Gardens, Glasgow G12 8QW, Lanark, Scotland
关键词
Parameterised complexity; Bounded treewidth; Graph colouring; List colouring; Hamilton path; NP-COMPLETENESS; CHROMATIC INDEX; TOTAL COLORINGS; EDGE;
D O I
10.1016/j.ic.2016.08.001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the parameterised complexity of several list problems on graphs, with parameter treewidth or pathwidth. In particular, we show that LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by treewidth, whereas LIST HAMILTON PATH is W[1]-hard, even parameterised by pathwidth. These results resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen (2011). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [21] Dynamic Algorithms for Graphs of Bounded Treewidth
    T. Hagerup
    Algorithmica, 2000, 27 : 292 - 315
  • [22] Channel assignment on graphs of bounded treewidth
    McDiarmid, C
    Reed, B
    DISCRETE MATHEMATICS, 2003, 273 (1-3) : 183 - 192
  • [23] Defensive alliances in graphs of bounded treewidth
    Bliem, Bernhard
    Woltran, Stefan
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 334 - 339
  • [24] Bisection of bounded treewidth graphs by convolutions
    Eiben, Eduard
    Lokshtanov, Daniel
    Mouawad, Amer E.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2021, 119 : 125 - 132
  • [25] On the number of labeled graphs of bounded treewidth
    Baste, Julien
    Noy, Marc
    Sau, Ignasi
    EUROPEAN JOURNAL OF COMBINATORICS, 2018, 71 : 12 - 21
  • [26] Equitable colorings of bounded treewidth graphs
    Bodlaender, HL
    Fomin, FV
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2004, PROCEEDINGS, 2004, 3153 : 180 - 190
  • [27] On the Number of Labeled Graphs of Bounded Treewidth
    Baste, Julien
    Noy, Marc
    Sau, Ignasi
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 88 - 99
  • [28] Dynamic algorithms for graphs of bounded treewidth
    Hagerup, T
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1997, 1256 : 292 - 302
  • [29] Recognizing Map Graphs of Bounded Treewidth
    Patrizio Angelini
    Michael A. Bekos
    Giordano Da Lozzo
    Martin Gronemann
    Fabrizio Montecchiani
    Alessandra Tappini
    Algorithmica, 2024, 86 : 613 - 637
  • [30] Bisection of bounded treewidth graphs by convolutions
    Eiben, Eduard
    Lokshtanov, Daniel
    Mouawad, Amer E.
    Journal of Computer and System Sciences, 2021, 119 : 125 - 132