Fundamental and practical approaches for single-cell ATAC-seq analysis

被引:8
|
作者
Shi, Peiyu [1 ]
Nie, Yage [2 ]
Yang, Jiawen [1 ]
Zhang, Weixing [1 ]
Tang, Zhongjie [1 ]
Xu, Jin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510275, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Chromatin accessibility; scATAC-seq; Data analysis; Bioinformatic tools; CHROMATIN ACCESSIBILITY; REVEALS; GENOME; CANCER; RNA;
D O I
10.1007/s42994-022-00082-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Assays for transposase-accessible chromatin through high-throughput sequencing (ATAC-seq) are effective tools in the study of genome-wide chromatin accessibility landscapes. With the rapid development of single-cell technology, open chromatin regions that play essential roles in epigenetic regulation have been measured at the single-cell level using single-cell ATAC-seq approaches. The application of scATAC-seq has become as popular as that of scRNA-seq. However, owing to the nature of scATAC-seq data, which are sparse and noisy, processing the data requires different methodologies and empirical experience. This review presents a practical guide for processing scATAC-seq data, from quality evaluation to downstream analysis, for various applications. In addition to the epigenomic profiling from scATAC-seq, we also discuss recent studies in which the function of non-coding variants has been investigated based on cell type-specific cis-regulatory elements and how to use the by-product genetic information obtained from scATAC-seq to infer single-cell copy number variants and trace cell lineage. We anticipate that this review will assist researchers in designing and implementing scATAC-seq assays to facilitate research in diverse fields.
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [41] A Unified Deep Learning Framework for Single-Cell ATAC-Seq Analysis Based on ProdDep Transformer Encoder
    Wang, Zixuan
    Zhang, Yongqing
    Yu, Yun
    Zhang, Junming
    Liu, Yuhang
    Zou, Quan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (05)
  • [42] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Ramakrishnan, Akshaya
    Symeonidi, Aikaterini
    Hanel, Patrick
    Schmid, Katharina T.
    Richter, Maria L.
    Schubert, Michael
    Colome-Tatche, Maria
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [43] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Gonzalez-Blas, Carmen Bravo
    Minnoye, Liesbeth
    Papasokrati, Dafni
    Aibar, Sara
    Hulselmans, Gert
    Christiaens, Valerie
    Davie, Kristofer
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2019, 16 (05) : 397 - +
  • [44] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Li, Zhijian
    Kuppe, Christoph
    Ziegler, Susanne
    Cheng, Mingbo
    Kabgani, Nazanin
    Menzel, Sylvia
    Zenke, Martin
    Kramann, Rafael
    Costa, Ivan G.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [45] cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data
    Carmen Bravo González-Blas
    Liesbeth Minnoye
    Dafni Papasokrati
    Sara Aibar
    Gert Hulselmans
    Valerie Christiaens
    Kristofer Davie
    Jasper Wouters
    Stein Aerts
    Nature Methods, 2019, 16 : 397 - 400
  • [46] Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen
    Zhijian Li
    Christoph Kuppe
    Susanne Ziegler
    Mingbo Cheng
    Nazanin Kabgani
    Sylvia Menzel
    Martin Zenke
    Rafael Kramann
    Ivan G. Costa
    Nature Communications, 12
  • [47] epiAneufinder identifies copy number alterations from single-cell ATAC-seq data
    Akshaya Ramakrishnan
    Aikaterini Symeonidi
    Patrick Hanel
    Katharina T. Schmid
    Maria L. Richter
    Michael Schubert
    Maria Colomé-Tatché
    Nature Communications, 14
  • [48] Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads
    De Rop, Florian, V
    Ismail, Joy N.
    Bravo Gonzalez-Blas, Carmen
    Hulselmans, Gert J.
    Flerin, Christopher Campbell
    Janssens, Jasper
    Theunis, Koen
    Christiaens, Valerie M.
    Wouters, Jasper
    Marcassa, Gabriele
    de Wit, Joris
    Poovathingal, Suresh
    Aerts, Stein
    ELIFE, 2022, 11
  • [49] Integrative Analysis of Single-Cell RNA-Seq and ATAC-Seq Data across Treatment Time Points in Pediatric AML
    Wei, Lisa
    Trinh, Diane
    Ries, Rhonda E.
    Jin, Dan
    Corbett, Richard D.
    Smith, Jenny L.
    Furlan, Scott N.
    Meshinchi, Soheil
    Marra, Marco A.
    BLOOD, 2020, 136
  • [50] Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data
    Lee M.Y.Y.
    Kaestner K.H.
    Li M.
    Genome Biology, 24 (1)