Fundamental and practical approaches for single-cell ATAC-seq analysis

被引:8
|
作者
Shi, Peiyu [1 ]
Nie, Yage [2 ]
Yang, Jiawen [1 ]
Zhang, Weixing [1 ]
Tang, Zhongjie [1 ]
Xu, Jin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Zhongshan Sch Med, Guangzhou 510275, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Chromatin accessibility; scATAC-seq; Data analysis; Bioinformatic tools; CHROMATIN ACCESSIBILITY; REVEALS; GENOME; CANCER; RNA;
D O I
10.1007/s42994-022-00082-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Assays for transposase-accessible chromatin through high-throughput sequencing (ATAC-seq) are effective tools in the study of genome-wide chromatin accessibility landscapes. With the rapid development of single-cell technology, open chromatin regions that play essential roles in epigenetic regulation have been measured at the single-cell level using single-cell ATAC-seq approaches. The application of scATAC-seq has become as popular as that of scRNA-seq. However, owing to the nature of scATAC-seq data, which are sparse and noisy, processing the data requires different methodologies and empirical experience. This review presents a practical guide for processing scATAC-seq data, from quality evaluation to downstream analysis, for various applications. In addition to the epigenomic profiling from scATAC-seq, we also discuss recent studies in which the function of non-coding variants has been investigated based on cell type-specific cis-regulatory elements and how to use the by-product genetic information obtained from scATAC-seq to infer single-cell copy number variants and trace cell lineage. We anticipate that this review will assist researchers in designing and implementing scATAC-seq assays to facilitate research in diverse fields.
引用
收藏
页码:212 / 223
页数:12
相关论文
共 50 条
  • [21] SCALE method for single-cell ATAC-seq analysis via latent feature extraction
    Lei Xiong
    Kui Xu
    Kang Tian
    Yanqiu Shao
    Lei Tang
    Ge Gao
    Michael Zhang
    Tao Jiang
    Qiangfeng Cliff Zhang
    Nature Communications, 10
  • [22] SCALE method for single-cell ATAC-seq analysis via latent feature extraction
    Xiong, Lei
    Xu, Kui
    Tian, Kang
    Shao, Yanqiu
    Tang, Lei
    Gao, Ge
    Zhang, Michael
    Jiang, Tao
    Zhang, Qiangfeng Cliff
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [23] Decoding cell replicational age from single-cell ATAC-seq data
    Xiao, Yu
    Zhang, Yi
    NATURE BIOTECHNOLOGY, 2024,
  • [24] Integrative Single-Cell RNA-Seq and ATAC-Seq Analysis of Mouse Corneal Epithelial Cells
    Lu, Zhao-Jing
    Ye, Jin-Guo
    Wang, Dong-Liang
    Li, Meng-Ke
    Zhang, Qi-Kai
    Liu, Zhong
    Huang, Yan-Jing
    Pan, Cai-Neng
    Lin, Yu-Heng
    Shi, Zhuo-Xing
    Zheng, Ying-Feng
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (03)
  • [25] Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq
    Raevskiy, Mikhail
    Yanvarev, Vladislav
    Jung, Sascha
    Del Sol, Antonio
    Medvedeva, Yulia A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
  • [26] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Fang, Rongxin
    Preissl, Sebastian
    Li, Yang
    Hou, Xiaomeng
    Lucero, Jacinta
    Wang, Xinxin
    Motamedi, Amir
    Shiau, Andrew K.
    Zhou, Xinzhu
    Xie, Fangming
    Mukamel, Eran A.
    Zhang, Kai
    Zhang, Yanxiao
    Behrens, M. Margarita
    Ecker, Joseph R.
    Ren, Bing
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [27] Comprehensive analysis of single cell ATAC-seq data with SnapATAC
    Rongxin Fang
    Sebastian Preissl
    Yang Li
    Xiaomeng Hou
    Jacinta Lucero
    Xinxin Wang
    Amir Motamedi
    Andrew K. Shiau
    Xinzhu Zhou
    Fangming Xie
    Eran A. Mukamel
    Kai Zhang
    Yanxiao Zhang
    M. Margarita Behrens
    Joseph R. Ecker
    Bing Ren
    Nature Communications, 12
  • [28] scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
    Duan, Hongyu
    Li, Feng
    Shang, Junliang
    Liu, Jinxing
    Li, Yan
    Liu, Xikui
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2022, 14 (04) : 917 - 928
  • [29] scBridge embraces cell heterogeneity in single-cell RNA-seq and ATAC-seq data integration
    Li, Yunfan
    Zhang, Dan
    Yang, Mouxing
    Peng, Dezhong
    Yu, Jun
    Liu, Yu
    Lv, Jiancheng
    Chen, Lu
    Peng, Xi
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [30] Benchmarking automated cell type annotation tools for single-cell ATAC-seq data
    Wang, Yuge
    Sun, Xingzhi
    Zhao, Hongyu
    FRONTIERS IN GENETICS, 2022, 13