Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping

被引:54
|
作者
Meszlenyi, Regina J. [1 ,2 ]
Hermann, Petra [2 ]
Buza, Krisztian [2 ]
Gal, Viktor [2 ]
Vidnyanszky, Zoltan [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Cognit Sci, Budapest, Hungary
[2] Hungarian Acad Sci, Res Ctr Nat Sci, Brain Imaging Ctr, Budapest, Hungary
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
关键词
functional magnetic resonance imaging; classification; Dynamic Time Warping; resting state connectivity; connectome; TEST-RETEST RELIABILITY; DEFAULT MODE NETWORK; GLOBAL SIGNAL; HUMAN BRAIN; CLASSIFICATION; FLUCTUATIONS; REGRESSION; PATTERNS; CORTEX; ANTICORRELATIONS;
D O I
10.3389/fnins.2017.00075
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Traditional resting-state network concept is based on calculating linear dependence of spontaneous low frequency fluctuations of the BOLD signals of different brain areas, which assumes temporally stable zero-lag synchrony across regions. However, growing amount of experimental findings suggest that functional connectivity exhibits dynamic changes and a complex time-lag structure, which cannot be captured by the static zero-lag correlation analysis. Here we propose a new approach applying Dynamic Time Warping (DTW) distance to evaluate functional connectivity strength that accounts for non-stationarity and phase-lags between the observed signals. Using simulated fMRI data we found that DTW captures dynamic interactions and it is less sensitive to linearly combined global noise in the data as compared to traditional correlation analysis. We tested our method using resting-state fMRI data from repeated measurements of an individual subject and showed that DTW analysis results in more stable connectivity patterns by reducing the within-subject variability and increasing robustness for preprocessing strategies. Classification results on a public dataset revealed a superior sensitivity of the DTW analysis to group differences by showing that DTW based classifiers outperform the zero-lag correlation and maximal lag cross-correlation based classifiers significantly. Our findings suggest that analysing resting-state functional connectivity using DTW provides an efficient new way for characterizing functional networks.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Functional Connectivity Analysis of Resting-State fMRI Networks in Nicotine Dependent Patients
    Smith, Aria
    Ehtemami, Anahid
    Fratte, Daniel
    Meyer-Baese, Anke
    Zavala-Romero, Olmo
    Goudriaan, Anna E.
    Schmaal, Lianne
    Schulte, Mieke H. J.
    MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2016, 9788
  • [42] Abnormalities of functional connectivity in patients with frontotemporal dementia: a network analysis using resting state fMRI and graph theory
    Filippi, M.
    Sala, S.
    Valsasina, P.
    Agosta, F.
    Magnani, G.
    Cappa, S. F.
    Scola, E.
    Falini, A.
    Comi, G.
    EUROPEAN JOURNAL OF NEUROLOGY, 2012, 19 : 458 - 458
  • [43] Abnormalities of Functional Connectivity in Patients with Frontotemporal Dementia: A Network Analysis Using Resting State fMRI and the Graph Theory
    Agosta, Federica
    Sala, Sara
    Valsasina, Paola
    Magnani, Giuseppe
    Cappa, Stefano F.
    Scola, Elisa
    Falini, Andrea
    Comi, Giancarlo
    Filippi, Massimo
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2012, 33 : 158 - 159
  • [44] Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI
    Shen, Hui
    Wang, Lubin
    Liu, Yadong
    Hu, Dewen
    NEUROIMAGE, 2010, 49 (04) : 3110 - 3121
  • [45] Abnormalities of functional connectivity in patients with frontotemporal dementia: a network analysis using resting state fMRI and graph theory
    Filippi, M.
    Sala, S.
    Valsasina, P.
    Agosta, F.
    Magnani, G.
    Cappa, S. F.
    Scola, E.
    Falini, A.
    Comi, G.
    JOURNAL OF NEUROLOGY, 2012, 259 : S62 - S62
  • [46] Functional connectivity in a sample of chess experts: a resting state fMRI study
    Keshavarzian, N.
    Meredith-Duliba, T.
    Osipowicz, K.
    Williams, J. M.
    CLINICAL NEUROPSYCHOLOGIST, 2016, 30 (03) : 374 - 374
  • [47] Functional connectivity in resting-state fMRI: Is linear correlation sufficient?
    Hlinka, Jaroslav
    Palus, Milan
    Vejmelka, Martin
    Mantini, Dante
    Corbetta, Maurizio
    NEUROIMAGE, 2011, 54 (03) : 2218 - 2225
  • [48] Functional connectivity in connectivity in euthymic patients with bipolar disorder: an fMRI resting state study
    Polosan, M.
    Favre, P.
    Baciu, M.
    BIPOLAR DISORDERS, 2013, 15 : 73 - 73
  • [49] Striatal functional connectivity networks are modulated by fMRI resting state conditions
    Gopinath, Kaundinya
    Ringe, Wendy
    Goyal, Aman
    Carter, Kirstine
    Dinse, Hubert R.
    Haley, Robert
    Briggs, Richard
    NEUROIMAGE, 2011, 54 (01) : 380 - 388
  • [50] Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI
    Cai, Biao
    Zille, Pascal
    Stephen, Julia M.
    Wilson, Tony W.
    Calhoun, Vince D.
    Wang, Yu Ping
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (05) : 1224 - 1234