Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping

被引:54
|
作者
Meszlenyi, Regina J. [1 ,2 ]
Hermann, Petra [2 ]
Buza, Krisztian [2 ]
Gal, Viktor [2 ]
Vidnyanszky, Zoltan [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Dept Cognit Sci, Budapest, Hungary
[2] Hungarian Acad Sci, Res Ctr Nat Sci, Brain Imaging Ctr, Budapest, Hungary
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
关键词
functional magnetic resonance imaging; classification; Dynamic Time Warping; resting state connectivity; connectome; TEST-RETEST RELIABILITY; DEFAULT MODE NETWORK; GLOBAL SIGNAL; HUMAN BRAIN; CLASSIFICATION; FLUCTUATIONS; REGRESSION; PATTERNS; CORTEX; ANTICORRELATIONS;
D O I
10.3389/fnins.2017.00075
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Traditional resting-state network concept is based on calculating linear dependence of spontaneous low frequency fluctuations of the BOLD signals of different brain areas, which assumes temporally stable zero-lag synchrony across regions. However, growing amount of experimental findings suggest that functional connectivity exhibits dynamic changes and a complex time-lag structure, which cannot be captured by the static zero-lag correlation analysis. Here we propose a new approach applying Dynamic Time Warping (DTW) distance to evaluate functional connectivity strength that accounts for non-stationarity and phase-lags between the observed signals. Using simulated fMRI data we found that DTW captures dynamic interactions and it is less sensitive to linearly combined global noise in the data as compared to traditional correlation analysis. We tested our method using resting-state fMRI data from repeated measurements of an individual subject and showed that DTW analysis results in more stable connectivity patterns by reducing the within-subject variability and increasing robustness for preprocessing strategies. Classification results on a public dataset revealed a superior sensitivity of the DTW analysis to group differences by showing that DTW based classifiers outperform the zero-lag correlation and maximal lag cross-correlation based classifiers significantly. Our findings suggest that analysing resting-state functional connectivity using DTW provides an efficient new way for characterizing functional networks.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A longitudinal model for functional connectivity networks using resting-state fMRI
    Hart, Brian
    Cribben, Ivor
    Fiecas, Mark
    NEUROIMAGE, 2018, 178 : 687 - 701
  • [22] The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI
    Khalili-Mahani, Najmeh
    Chang, Catie
    van Osch, Matthias J.
    Veer, Ilya M.
    van Buchem, Mark A.
    Dahan, Albert
    Beckmann, Christian F.
    van Gerven, Joop M. A.
    Rombouts, Serge A. R. B.
    NEUROIMAGE, 2013, 65 : 499 - 510
  • [23] Psychopathology and Resting State Functional Connectivity in Adult ADHD: A Resting State fMRI Study
    Baradits, Mate
    Kakuszi, Brigitta
    Balogh, Livia
    Bitter, Istvan
    Rethelyi, Janos
    Czobor, Pal
    BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S114 - S114
  • [24] Estimation of static and dynamic functional connectivity in resting-state fMRI using zero-frequency resonator
    Das, Sukesh Kumar
    Sao, Anil K.
    Biswal, Bharat B.
    HUMAN BRAIN MAPPING, 2024, 45 (09)
  • [25] Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI
    Xu, Tingting
    Cullen, Kathryn R.
    Mueller, Bryon
    Schreiner, MindyW.
    Lim, Kelvin O.
    Schulz, S. Charles
    Parhi, Keshab K.
    NEUROIMAGE-CLINICAL, 2016, 11 : 302 - 315
  • [26] The influence of preprocessing steps on functional connectivity in resting state fMRI
    Gargouri, Fatma
    Delphine, Sebastien
    Lehericy, Stephan
    Ben Hamida, Ahmed
    2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2016, : 103 - 107
  • [27] Functional Connectivity of Human Striatum: A Resting State fMRI Study
    Di Martino, A.
    Scheres, A.
    Margulies, D. S.
    Kelly, A. M. C.
    Uddin, L. Q.
    Shehzad, Z.
    Biswal, B.
    Walters, J. R.
    Castellanos, F. X.
    Milham, M. P.
    CEREBRAL CORTEX, 2008, 18 (12) : 2735 - 2747
  • [28] Functional connectivity of human striatum: A resting state fMRI study
    Di Martino, Adriana
    Scheres, Anouk
    Margulies, Daniel
    Kelly, Clare A. M.
    Uddin, Lucina Q.
    Shehzad, Zarrar
    Biswal, Bharat B.
    Walters, Judith R.
    Castellanos, F. Xavier
    Milham, Michael P.
    BIOLOGICAL PSYCHIATRY, 2008, 63 (07) : 7S - 7S
  • [29] Disrupted Functional Connectivity in Schizophrenia: a Resting State Fmri Study
    Singh, S.
    Kumar, M.
    Sharma, A.
    Modi, S.
    Kaur, P.
    Bhatia, T.
    Deshpande, S.
    Khushu, S.
    EUROPEAN PSYCHIATRY, 2015, 30
  • [30] Dynamic functional connectivity of electroencephalogram in the resting state
    Yang Jian
    Chen Shu-Shen
    Huangfu Hao-Ran
    Liang Pei-Peng
    Zhong Ning
    ACTA PHYSICA SINICA, 2015, 64 (05)