Benchmarking Deep Learning for Time Series: Challenges and Directions

被引:0
|
作者
Huang, Xinyuan [1 ]
Fox, Geoffrey C. [2 ]
Serebryakov, Sergey [3 ]
Mohan, Ankur [4 ]
Morkisz, Pawel [5 ,6 ]
Dutta, Debojyoti [1 ]
机构
[1] Cisco Syst, San Jose, CA 95134 USA
[2] Indiana Univ, Bloomington, IN USA
[3] Hewlett Packard Enterprise, San Jose, CA USA
[4] In Q Tel, Arlington, VA USA
[5] Nvidia, Warsaw, Poland
[6] AGH Univ Sci & Technol, Krakow, Poland
关键词
machine learning; deep learning; time series; performance; benchmark; CLASSIFICATION;
D O I
10.1109/bigdata47090.2019.9005496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning for time series is an emerging area with close ties to industry, yet under represented in performance benchmarks for machine learning systems. In this paper, we present a landscape of deep learning applications applied to time series, and discuss the challenges and directions towards building a robust performance benchmark of deep learning workloads for time series data.
引用
收藏
页码:5679 / 5682
页数:4
相关论文
共 50 条
  • [31] Mcfly: Automated deep learning on time series
    van Kuppevelt, D.
    Meijer, C.
    Huber, F.
    van der Ploeg, A.
    Georgievska, S.
    van Hees, V. T.
    SOFTWAREX, 2020, 12
  • [32] Deep learning for time series classification: a review
    Fawaz, Hassan Ismail
    Forestier, Germain
    Weber, Jonathan
    Idoumghar, Lhassane
    Muller, Pierre-Alain
    DATA MINING AND KNOWLEDGE DISCOVERY, 2019, 33 (04) : 917 - 963
  • [33] Deep imputation of missing values in time series health data: A review with benchmarking
    Kazijevs, Maksims
    Samad, Manar D.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2023, 144
  • [34] Deep learning based infrared small object segmentation: Challenges and future directions
    Yang, Zhengeng
    Yu, Hongshan
    Zhang, Jianjun
    Tang, Qiang
    Mian, Ajmal
    INFORMATION FUSION, 2025, 118
  • [35] Breast cancer detection using deep learning techniques: challenges and future directions
    Muhammad Saad Shahid
    Azhar Imran
    Multimedia Tools and Applications, 2025, 84 (6) : 3257 - 3304
  • [36] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Alzubaidi, Laith
    Zhang, Jinglan
    Humaidi, Amjad J.
    Al-Dujaili, Ayad
    Duan, Ye
    Al-Shamma, Omran
    Santamaria, J.
    Fadhel, Mohammed A.
    Al-Amidie, Muthana
    Farhan, Laith
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [37] Formal methods enhance deep learning for smart cities: Challenges and future directions
    Ma, Meiyi
    XRDS: Crossroads, 2022, 28 (03): : 42 - 46
  • [38] Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
    Laith Alzubaidi
    Jinglan Zhang
    Amjad J. Humaidi
    Ayad Al-Dujaili
    Ye Duan
    Omran Al-Shamma
    J. Santamaría
    Mohammed A. Fadhel
    Muthana Al-Amidie
    Laith Farhan
    Journal of Big Data, 8
  • [39] Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Hussain, Muzammil
    Liew, Soung-Yue
    Andonovic, Ivan
    Khan, Muhammad Adnan
    SENSORS, 2022, 22 (18)
  • [40] Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions
    Bharati, Subrato
    Podder, Prajoy
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022