Benchmarking Deep Learning for Time Series: Challenges and Directions

被引:0
|
作者
Huang, Xinyuan [1 ]
Fox, Geoffrey C. [2 ]
Serebryakov, Sergey [3 ]
Mohan, Ankur [4 ]
Morkisz, Pawel [5 ,6 ]
Dutta, Debojyoti [1 ]
机构
[1] Cisco Syst, San Jose, CA 95134 USA
[2] Indiana Univ, Bloomington, IN USA
[3] Hewlett Packard Enterprise, San Jose, CA USA
[4] In Q Tel, Arlington, VA USA
[5] Nvidia, Warsaw, Poland
[6] AGH Univ Sci & Technol, Krakow, Poland
关键词
machine learning; deep learning; time series; performance; benchmark; CLASSIFICATION;
D O I
10.1109/bigdata47090.2019.9005496
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning for time series is an emerging area with close ties to industry, yet under represented in performance benchmarks for machine learning systems. In this paper, we present a landscape of deep learning applications applied to time series, and discuss the challenges and directions towards building a robust performance benchmark of deep learning workloads for time series data.
引用
收藏
页码:5679 / 5682
页数:4
相关论文
共 50 条
  • [21] A Systematic Review of Using Deep Learning in Aphasia: Challenges and Future Directions
    Wang, Yin
    Cheng, Weibin
    Sufi, Fahim
    Fang, Qiang
    Mahmoud, Seedahmed S.
    COMPUTERS, 2024, 13 (05)
  • [22] Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions
    Muhammad, Khan
    Ullah, Amin
    Lloret, Jaime
    Del Ser, Javier
    de Albuquerque, Victor Hugo C.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4316 - 4336
  • [23] Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions
    Do, Nguyet Quang
    Selamat, Ali
    Krejcar, Ondrej
    Herrera-Viedma, Enrique
    Fujita, Hamido
    IEEE ACCESS, 2022, 10 : 36429 - 36463
  • [24] Deep Learning for Time Series Forecasting: A Survey
    Torres, Jose F.
    Hadjout, Dalil
    Sebaa, Abderrazak
    Martinez-Alvarez, Francisco
    Troncoso, Alicia
    BIG DATA, 2021, 9 (01) : 3 - 21
  • [25] Deep Learning for Haemodialysis Time Series Classification
    Leonardi, Giorgio
    Montani, Stefania
    Striani, Manuel
    ARTIFICIAL INTELLIGENCE IN MEDICINE: KNOWLEDGE REPRESENTATION AND TRANSPARENT AND EXPLAINABLE SYSTEMS, AIME 2019, 2019, 11979 : 50 - 64
  • [26] Unsupervised Deep Learning for IoT Time Series
    Liu, Ya
    Zhou, Yingjie
    Yang, Kai
    Wang, Xin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (16) : 14285 - 14306
  • [27] Deep learning for time series forecasting: a survey
    Kong, Xiangjie
    Chen, Zhenghao
    Liu, Weiyao
    Ning, Kaili
    Zhang, Lechao
    Muhammad Marier, Syauqie
    Liu, Yichen
    Chen, Yuhao
    Xia, Feng
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,
  • [28] Continual Deep Learning for Time Series Modeling
    Ao, Sio-Iong
    Fayek, Haytham
    SENSORS, 2023, 23 (16)
  • [29] Deep learning for time series classification: a review
    Hassan Ismail Fawaz
    Germain Forestier
    Jonathan Weber
    Lhassane Idoumghar
    Pierre-Alain Muller
    Data Mining and Knowledge Discovery, 2019, 33 : 917 - 963
  • [30] Classification of chaotic time series with deep learning
    Boulle, Nicolas
    Dallas, Vassilios
    Nakatsukasa, Yuji
    Samaddar, D.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 403