Lattices with many congruences are planar

被引:8
|
作者
Czedli, Gabor [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
芬兰科学院;
关键词
Planar lattice; Lattice congruence; Congruence lattice;
D O I
10.1007/s00012-019-0589-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be an n-element finite lattice. We prove that if L has more than 2n-5 congruences, then L is planar. This result is sharp, since for each natural number n8, there exists a non-planar lattice with exactly 2n-5 congruences.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Lattices with many congruences are planar
    Gábor Czédli
    Algebra universalis, 2019, 80
  • [2] Congruences of fork extensions of slim, planar, semimodular lattices
    G. Grätzer
    Algebra universalis, 2016, 76 : 139 - 154
  • [4] Congruences in slim, planar, semimodular lattices: The Swing Lemma
    Gratzer G.
    Acta Scientiarum Mathematicarum, 2015, 81 (3-4): : 381 - 397
  • [5] Notes on planar semimodular lattices II. Congruences
    Graetzer, G.
    Knapp, E.
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (1-2): : 37 - 47
  • [6] MANY CONGRUENCES
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1993, 31 (04): : 380 - 382
  • [7] Congruences in residuated lattices
    Feng, Shuang
    Yang, Jingmei
    2015 7th International Conference on Modelling, Identification and Control (ICMIC), 2014, : 1 - 3
  • [8] On congruences of weak lattices
    Ivan Chajda
    Helmut Länger
    Soft Computing, 2016, 20 : 4767 - 4771
  • [9] CONGRUENCES IN COMPOSITE LATTICES
    MITSCH, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 287 : 227 - 238
  • [10] TOLERANCES AND CONGRUENCES ON LATTICES
    JANOWITZ, MF
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1986, 36 (01) : 108 - 115