Lattices with many congruences are planar

被引:8
|
作者
Czedli, Gabor [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
芬兰科学院;
关键词
Planar lattice; Lattice congruence; Congruence lattice;
D O I
10.1007/s00012-019-0589-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be an n-element finite lattice. We prove that if L has more than 2n-5 congruences, then L is planar. This result is sharp, since for each natural number n8, there exists a non-planar lattice with exactly 2n-5 congruences.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Orthomodular lattices and permutable congruences
    David Kelly
    R. Padmanabhan
    algebra universalis, 2005, 53 : 227 - 228
  • [22] Congruences of finite semidistributive lattices
    Nation, J. B.
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (03): : 443 - 473
  • [23] PERMUTABILITY OF SEMILATTICE CONGRUENCES ON LATTICES
    FUJIWARA, T
    CANADIAN JOURNAL OF MATHEMATICS, 1967, 19 (02): : 370 - &
  • [24] Extensions and Congruences of Partial Lattices
    Chajda, Ivan
    Laenger, Helmut
    MATHEMATICA SLOVACA, 2023, 73 (02) : 289 - 304
  • [25] Congruences of Clone Lattices, II
    Andrei A. Krokhin
    Order, 2001, 18 : 151 - 159
  • [26] Orthomodular lattices and permutable congruences
    Kelly, D
    Padmanabhan, R
    ALGEBRA UNIVERSALIS, 2005, 53 (2-3) : 227 - 228
  • [27] LATTICES OF PROCESSES IN GRAPHS AND CONGRUENCES ON IDEALS IN DISTRIBUTIVE LATTICES
    SHAKHBAZYAN, KV
    LEBEDINSKAYA, NB
    TUSHKINA, TA
    CYBERNETICS AND SYSTEMS ANALYSIS, 1992, 28 (01) : 140 - 143
  • [28] Congruence lattices of lattices with m-permutable congruences
    Ploscica, Miroslav
    ACTA SCIENTIARUM MATHEMATICARUM, 2008, 74 (1-2): : 23 - 36
  • [29] Complete Congruences of Completely Distributive Lattices
    Calk, Cameron
    Santocanale, Luigi
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, RAMICS 2024, 2024, 14787 : 101 - 118
  • [30] A note on representation of lattices by weak congruences
    Branimir Šešelja
    Vanja Stepanović
    Andreja Tepavčević
    Algebra universalis, 2012, 68 : 287 - 291