On congruences of weak lattices

被引:0
|
作者
Ivan Chajda
Helmut Länger
机构
[1] Palacký University Olomouc,Department of Algebra and Geometry, Faculty of Science
[2] TU Wien,Faculty of Mathematics and Geoinformation, Institute of Discrete Mathematics and Geometry
来源
Soft Computing | 2016年 / 20卷
关键词
Weak lattice; Congruence; Majority term;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize when an equivalence relation on the base set of a weak lattice L=(L,⊔,⊓)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}=(L,\sqcup ,\sqcap )$$\end{document} becomes a congruence on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}$$\end{document} provided it has convex classes. We show that an equivalence relation on L is a congruence on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}$$\end{document} if it satisfies the substitution property for comparable elements. Conditions under which congruence classes are convex are studied. If one fundamental operation of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}$$\end{document} is commutative then L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}$$\end{document} is congruence distributive and all congruences of L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{L}$$\end{document} have convex classes.
引用
收藏
页码:4767 / 4771
页数:4
相关论文
共 50 条
  • [1] On congruences of weak lattices
    Chajda, Ivan
    Laenger, Helmut
    SOFT COMPUTING, 2016, 20 (12) : 4767 - 4771
  • [2] A note on representation of lattices by weak congruences
    Branimir Šešelja
    Vanja Stepanović
    Andreja Tepavčević
    Algebra universalis, 2012, 68 : 287 - 291
  • [3] WEAK MODULARITY + PERMUTABILITY OF CONGRUENCES IN LATTICES
    IQBALUNN.
    CURRENT SCIENCE, 1964, 33 (04): : 108 - +
  • [4] A note on representation of lattices by weak congruences
    Seselja, Branimir
    Stepanovic, Vanja
    Tepavcevic, Andreja
    ALGEBRA UNIVERSALIS, 2012, 68 (3-4) : 287 - 291
  • [5] ON THE NUMBERS OF WEAK CONGRUENCES OF SOME FINITE LATTICES
    Horvath, Eszter k.
    Tepavcevic, Andreja
    MISKOLC MATHEMATICAL NOTES, 2024, 25 (02)
  • [6] On congruences in weak implicative semi-lattices
    Hernán Javier San Martín
    Soft Computing, 2017, 21 : 3167 - 3176
  • [7] On congruences in weak implicative semi-lattices
    Javier San Martin, Hernan
    SOFT COMPUTING, 2017, 21 (12) : 3167 - 3176
  • [8] WEAK DISTRIBUTIVE LAWS AND THEIR ROLE IN LATTICES OF CONGRUENCES AND EQUATIONAL THEORIES
    ERNE, M
    ALGEBRA UNIVERSALIS, 1988, 25 (03) : 290 - 321
  • [9] Congruences in residuated lattices
    Feng, Shuang
    Yang, Jingmei
    2015 7th International Conference on Modelling, Identification and Control (ICMIC), 2014, : 1 - 3
  • [10] CONGRUENCES IN COMPOSITE LATTICES
    MITSCH, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1976, 287 : 227 - 238