FRECHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT

被引:3
|
作者
Ciarlet, Philippe G. [1 ]
Dinca, George [2 ]
Matei, Pavel [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[3] Tech Univ Civil Engn, Dept Math & Comp Sci, Bucharest 020396, Romania
关键词
Sobolev space with variable exponent; smooth space; Frechet differentiability of the norm; uniform convex space; GEOMETRY;
D O I
10.1142/S0219530513500127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a domain in R-N, let p(.) is an element of C((Omega) over bar) be such that p(x) > 1 for all x is an element of (Omega) over bar, let W-1,W-p(.)(Omega) be the Sobolev space with variable exponent p(.), let Gamma(0) be a d Gamma-measurable subset of Gamma = partial derivative Omega that satisfies d Gamma-meas Gamma(0) > 0, and let U-Gamma 0 = {u is an element of W-1,W-p(.)(Omega); tr u = 0 on Gamma(0)}. It is shown that the map u is an element of U-Gamma 0 bar right arrow parallel to u parallel to(0),(p(.)),(del) = parallel to vertical bar del u vertical bar parallel to(0),(p(.)) is a Frechet-differentiable norm on U-Gamma 0, and a formula expressing the Frechet derivative of this norm at any nonzero u is an element of U-Gamma 0 is given. We also show that, if p(x) >= 2 for all x is an element of (Omega) over bar, (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)) is uniformly convex. Using properties of duality mappings defined on Banach spaces having a Frechet-differentiable norm, we give the explicit form of continuous linear functionals on (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)). It is also shown that the space U-Gamma 0 and its dual have the same Krein-Krasnoselski-Milman dimension.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Nonlocal characterizations of variable exponent Sobolev spaces
    Ferrari, Gianluca
    Squassina, Marco
    ASYMPTOTIC ANALYSIS, 2022, 127 (1-2) : 121 - 142
  • [32] Wavelet characterization of Sobolev spaces with variable exponent
    Izuki, Mitsuo
    JOURNAL OF APPLIED ANALYSIS, 2011, 17 (01) : 37 - 49
  • [33] Quasicontinuity on Weighted Sobolev Spaces with Variable Exponent
    Pinhong LONG
    Huili HAN
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 659 - 664
  • [34] Variable Exponent Sobolev Spaces and Regularity of Domains
    Gorka, Przemyslaw
    Karak, Nijjwal
    Pons, Daniel J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (07) : 7304 - 7319
  • [35] The variable exponent BV-Sobolev capacity
    Heikki Hakkarainen
    Matti Nuortio
    Revista Matemática Complutense, 2014, 27 : 13 - 40
  • [36] Regularity results for nonlinear parabolic problems in variable exponent Sobolev space with degenerate coercivity
    Bouhal, Abdellatif
    El Hadfi, Youssef
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (02) : 1013 - 1040
  • [37] Regularity results for nonlinear parabolic problems in variable exponent Sobolev space with degenerate coercivity
    Abdellatif Bouhal
    Youssef El Hadfi
    Journal of Elliptic and Parabolic Equations, 2022, 8 : 1013 - 1040
  • [38] Variable Exponent Sobolev Spaces and Regularity of Domains
    Przemysław Górka
    Nijjwal Karak
    Daniel J. Pons
    The Journal of Geometric Analysis, 2021, 31 : 7304 - 7319
  • [39] AN EQUIVALENT NORM FOR THE SOBOLEV SPACE HM
    PEDERSON, RN
    JOURNAL D ANALYSE MATHEMATIQUE, 1979, 36 : 213 - 216
  • [40] Variable Exponent p(middot)-Kirchhoff Type Problem with Convection in Variable Exponent Sobolev Spaces
    El Hammar, Hasnae
    El Ouaarabi, Mohamed
    Allalou, Chakir
    Melliani, Said
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41 : 19 - 19