FRECHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT

被引:3
|
作者
Ciarlet, Philippe G. [1 ]
Dinca, George [2 ]
Matei, Pavel [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[3] Tech Univ Civil Engn, Dept Math & Comp Sci, Bucharest 020396, Romania
关键词
Sobolev space with variable exponent; smooth space; Frechet differentiability of the norm; uniform convex space; GEOMETRY;
D O I
10.1142/S0219530513500127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a domain in R-N, let p(.) is an element of C((Omega) over bar) be such that p(x) > 1 for all x is an element of (Omega) over bar, let W-1,W-p(.)(Omega) be the Sobolev space with variable exponent p(.), let Gamma(0) be a d Gamma-measurable subset of Gamma = partial derivative Omega that satisfies d Gamma-meas Gamma(0) > 0, and let U-Gamma 0 = {u is an element of W-1,W-p(.)(Omega); tr u = 0 on Gamma(0)}. It is shown that the map u is an element of U-Gamma 0 bar right arrow parallel to u parallel to(0),(p(.)),(del) = parallel to vertical bar del u vertical bar parallel to(0),(p(.)) is a Frechet-differentiable norm on U-Gamma 0, and a formula expressing the Frechet derivative of this norm at any nonzero u is an element of U-Gamma 0 is given. We also show that, if p(x) >= 2 for all x is an element of (Omega) over bar, (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)) is uniformly convex. Using properties of duality mappings defined on Banach spaces having a Frechet-differentiable norm, we give the explicit form of continuous linear functionals on (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)). It is also shown that the space U-Gamma 0 and its dual have the same Krein-Krasnoselski-Milman dimension.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Sobolev embeddings with variable exponent, II
    Edmunds, DE
    Rákosník, J
    MATHEMATISCHE NACHRICHTEN, 2002, 246 : 53 - 67
  • [22] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389
  • [23] FRECHET DIFFERENTIABILITY, STRICT DIFFERENTIABILITY AND SUBDIFFERENTIABILITY
    ZAJICEK, L
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1991, 41 (03) : 471 - 489
  • [24] On Frechet differentiability of multifunctions
    Gorokhovik, VV
    Zabreiko, PP
    OPTIMIZATION, 2005, 54 (4-5) : 391 - 409
  • [25] Boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space
    Futamura, Toshihide
    Ohno, Takao
    Shimomura, Tetsu
    REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (01): : 31 - 48
  • [27] Holder quasicontinuity in variable exponent Sobolev spaces
    Harjulehto, Petteri
    Kinnunen, Juha
    Tuhkanen, Katja
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007, 2007 (1)
  • [28] Boundary limits of monotone Sobolev functions with variable exponent on uniform domains in a metric space
    Toshihide Futamura
    Takao Ohno
    Tetsu Shimomura
    Revista Matemática Complutense, 2015, 28 : 31 - 48
  • [29] The variable exponent BV-Sobolev capacity
    Hakkarainen, Heikki
    Nuortio, Matti
    REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (01): : 13 - 40
  • [30] Uniform Convexity in Variable Exponent Sobolev Spaces
    Bachar, Mostafa
    Khamsi, Mohamed A.
    Mendez, Osvaldo
    SYMMETRY-BASEL, 2023, 15 (11):