FRECHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT

被引:3
|
作者
Ciarlet, Philippe G. [1 ]
Dinca, George [2 ]
Matei, Pavel [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
[3] Tech Univ Civil Engn, Dept Math & Comp Sci, Bucharest 020396, Romania
关键词
Sobolev space with variable exponent; smooth space; Frechet differentiability of the norm; uniform convex space; GEOMETRY;
D O I
10.1142/S0219530513500127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a domain in R-N, let p(.) is an element of C((Omega) over bar) be such that p(x) > 1 for all x is an element of (Omega) over bar, let W-1,W-p(.)(Omega) be the Sobolev space with variable exponent p(.), let Gamma(0) be a d Gamma-measurable subset of Gamma = partial derivative Omega that satisfies d Gamma-meas Gamma(0) > 0, and let U-Gamma 0 = {u is an element of W-1,W-p(.)(Omega); tr u = 0 on Gamma(0)}. It is shown that the map u is an element of U-Gamma 0 bar right arrow parallel to u parallel to(0),(p(.)),(del) = parallel to vertical bar del u vertical bar parallel to(0),(p(.)) is a Frechet-differentiable norm on U-Gamma 0, and a formula expressing the Frechet derivative of this norm at any nonzero u is an element of U-Gamma 0 is given. We also show that, if p(x) >= 2 for all x is an element of (Omega) over bar, (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)) is uniformly convex. Using properties of duality mappings defined on Banach spaces having a Frechet-differentiable norm, we give the explicit form of continuous linear functionals on (U-Gamma 0, parallel to u parallel to(0),(p(.)),(del)). It is also shown that the space U-Gamma 0 and its dual have the same Krein-Krasnoselski-Milman dimension.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Characterization of the variable exponent Sobolev norm without derivatives
    Hasto, Peter
    Ribeiro, Ana Margarida
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (03)
  • [2] On differentiability of Sobolev functions with respect to the Sobolev norm
    Gol'dshtein, Vladimir
    Hashash, Paz
    Ukhlov, Alexander
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (10) : 3681 - 3699
  • [3] A Poincaré Inequality in a Sobolev Space with a Variable Exponent
    Philippe G.CIARLET
    George DINCA
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (03) : 333 - 342
  • [4] A Poincaré inequality in a Sobolev space with a variable exponent
    Philippe G. Ciarlet
    George Dinca
    Chinese Annals of Mathematics, Series B, 2011, 32
  • [5] A Poincare Inequality in a Sobolev Space with a Variable Exponent
    Ciarlet, Philippe G.
    Dinca, George
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (03) : 333 - 342
  • [6] FRECHET DIFFERENTIABILITY OF THE NORM IN OPERATOR-SPACES
    RUESS, W
    STEGALL, C
    MATHEMATISCHE ANNALEN, 1988, 280 (04) : 527 - 536
  • [7] Sobolev embeddings for Riesz potential space of variable exponent
    Futamura, Toshihide
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (13-14) : 1463 - 1473
  • [8] On the density of continuous functions in variable exponent Sobolev space
    Hasto, Peter A.
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (01) : 213 - 234
  • [9] On a new fractional Sobolev space with variable exponent on complete manifolds
    Ahmed Aberqi
    Omar Benslimane
    Abdesslam Ouaziz
    Dus̆an D. Repovs̆
    Boundary Value Problems, 2022
  • [10] On a new fractional Sobolev space with variable exponent on complete manifolds
    Aberqi, Ahmed
    Benslimane, Omar
    Ouaziz, Abdesslam
    Repovs, Dusan D.
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)