Lane Detection Transformer Based on Multi-frame Horizontal and Vertical Attention and Visual Transformer Module

被引:2
|
作者
Zhang, Han [1 ]
Gu, Yunchao [1 ]
Wang, Xinliang [1 ]
Pan, Junjun [1 ]
Wang, Minghui [1 ]
机构
[1] Beihang Univ, XueYuan Rd 37, Beijing, Peoples R China
来源
关键词
Autonomous driving; Lane detection; Transformer;
D O I
10.1007/978-3-031-19842-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lane detection requires adequate global information due to the simplicity of lane line features and changeable road scenes. In this paper, we propose a novel lane detection Transformer based on multiframe input to regress the parameters of lanes under a lane shape modeling. We design a Multi-frame Horizontal and Vertical Attention (MHVA) module to obtain more global features and use Visual Transformer (VT) module to get "lane tokens" with interaction information of lane instances. Extensive experiments on two public datasets show that our model can achieve state-of-art results on VIL-100 dataset and comparable performance on TuSimple dataset. In addition, our model runs at 46 fps on multi-frame data while using few parameters, indicating the feasibility and practicability in real-time self-driving applications of our proposed method.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] A Fast and Accurate Lane Detection Method Based on Row Anchor and Transformer Structure
    Chai, Yuxuan
    Wang, Shixian
    Zhang, Zhijia
    SENSORS, 2024, 24 (07)
  • [42] LDTR: Transformer-based lane detection with anchor-chain representation
    Yang, Zhongyu
    Shen, Chen
    Shao, Wei
    Xing, Tengfei
    Hu, Runbo
    Xu, Pengfei
    Chai, Hua
    Xue, Ruini
    COMPUTATIONAL VISUAL MEDIA, 2024, 10 (04) : 753 - 769
  • [43] A Lane-Changing Detection Model Using Span-based Transformer
    Gao, Jun
    Yi, Jiangang
    Murphey, Yi Lu
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2733 - 2738
  • [44] Video Relation Detection via Tracklet based Visual Transformer
    Gao, Kaifeng
    Chen, Long
    Huang, Yifeng
    Xiao, Jun
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4833 - 4837
  • [45] Multi-sensor Multi-frame Detection Based on Posterior Probability Density Fusion
    Wang, Jinghe
    Yi, Wei
    Kong, Lingjiang
    Yuan, Ye
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1548 - 1553
  • [46] An Advanced Object Detection Framework for UAV Imagery Utilizing Transformer-Based Architecture and Split Attention Module: PvSAMNet
    Sirisha, Museboyina
    Sudha, Sadasivam Vijayakumar
    TRAITEMENT DU SIGNAL, 2023, 40 (04) : 1661 - 1672
  • [47] Robust FOD Detection using Frame Sequence-based DEtection TRansformer (DETR)
    Qin, Xi
    Song, Sirui
    Brengman, Jackson
    Bartone, Chris
    Liu, Jundong
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1222 - 1226
  • [48] IMPULSIVE TIMING DETECTION BASED ON MULTI-FRAME PHASE VOTING FOR ACOUSTIC EVENT DETECTION
    Mishima, Sakiko
    Kondo, Reishi
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 956 - 960
  • [49] Sparse Transformer Visual Tracking Network Based on Second-Order Attention
    Yang, Xiaolin
    Hou, Zhiqiang
    Guo, Fan
    Ma, Sugang
    Yu, Wangsheng
    Yang, Xiaobao
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 571 - 579
  • [50] HAT: A Visual Transformer Model for Image Recognition Based on Hierarchical Attention Transformation
    Zhao, Xuanyu
    Hu, Tao
    Mao, Chunxia
    Yuan, Ye
    Li, Jun
    IEEE ACCESS, 2023, 11 : 100042 - 100051