Lane Detection Transformer Based on Multi-frame Horizontal and Vertical Attention and Visual Transformer Module

被引:2
|
作者
Zhang, Han [1 ]
Gu, Yunchao [1 ]
Wang, Xinliang [1 ]
Pan, Junjun [1 ]
Wang, Minghui [1 ]
机构
[1] Beihang Univ, XueYuan Rd 37, Beijing, Peoples R China
来源
关键词
Autonomous driving; Lane detection; Transformer;
D O I
10.1007/978-3-031-19842-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lane detection requires adequate global information due to the simplicity of lane line features and changeable road scenes. In this paper, we propose a novel lane detection Transformer based on multiframe input to regress the parameters of lanes under a lane shape modeling. We design a Multi-frame Horizontal and Vertical Attention (MHVA) module to obtain more global features and use Visual Transformer (VT) module to get "lane tokens" with interaction information of lane instances. Extensive experiments on two public datasets show that our model can achieve state-of-art results on VIL-100 dataset and comparable performance on TuSimple dataset. In addition, our model runs at 46 fps on multi-frame data while using few parameters, indicating the feasibility and practicability in real-time self-driving applications of our proposed method.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Point target detection methods based on multi-frame association
    Tong Xiliang
    Yu Gongmin
    Zhou Feng
    Yin Ke
    SEVENTH SYMPOSIUM ON NOVEL PHOTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATIONS, 2021, 11763
  • [22] Multi-frame joint detection method based on tracking information
    Liu H.
    Chen C.
    Yue K.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (08): : 2124 - 2128
  • [23] GasHis-Transformer: A multi-scale visual transformer approach for gastric histopathological image detection
    Chen, Haoyuan
    Li, Chen
    Wang, Ge
    Li, Xiaoyan
    Rahaman, Md Mamunur
    Sun, Hongzan
    Hu, Weiming
    Li, Yixin
    Liu, Wanli
    Sun, Changhao
    Ai, Shiliang
    Grzegorzek, Marcin
    PATTERN RECOGNITION, 2022, 130
  • [24] GasHis-Transformer: A multi-scale visual transformer approach for gastric histopathological image detection
    Chen, Haoyuan
    Li, Chen
    Wang, Ge
    Li, Xiaoyan
    Rahaman, Md Mamunur
    Sun, Hongzan
    Hu, Weiming
    Li, Yixin
    Liu, Wanli
    Sun, Changhao
    Ai, Shiliang
    Grzegorzek, Marcin
    PATTERN RECOGNITION, 2022, 130
  • [25] ST-MAE: robust lane detection in continuous multi-frame driving scenes based on a deep hybrid network
    Rongyun Zhang
    Yufeng Du
    Peicheng Shi
    Lifeng Zhao
    Yaming Liu
    Haoran Li
    Complex & Intelligent Systems, 2023, 9 : 4837 - 4855
  • [26] ST-MAE: robust lane detection in continuous multi-frame driving scenes based on a deep hybrid network
    Zhang, Rongyun
    Du, Yufeng
    Shi, Peicheng
    Zhao, Lifeng
    Liu, Yaming
    Li, Haoran
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 4837 - 4855
  • [27] Hybrid multi-attention transformer for robust video object detection
    Moorthy, Sathishkumar
    Sakthi, Sachin
    Arthanari, Sathiyamoorthi
    Jeong, Jae Hoon
    Joo, Young Hoon
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [28] Transformer-based Scene Graph Generation Network With Relational Attention Module
    Yamamoto, Takuma
    Obinata, Yuya
    Nakayama, Osafumi
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2034 - 2041
  • [29] MAFormer: A transformer network with multi-scale attention fusion for visual recognition
    Sun, Huixin
    Wang, Yunhao
    Wang, Xiaodi
    Zhang, Bin
    Xin, Ying
    Zhang, Baochang
    Cao, Xianbin
    Ding, Errui
    Han, Shumin
    NEUROCOMPUTING, 2024, 595
  • [30] Hybrid Attention Module and Transformer Based Fuze DRFM Jamming Signal Recognition
    Yang, Jikai
    Bai, Zhiquan
    Xian, Zhaoxia
    Xiang, Hongwu
    Li, Jingxin
    Hu, Huili
    Dai, Jian
    Hao, Xinhong
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (09) : 2091 - 2095