Multifunctional Self-Doped Nanocrystal Thin-Film Transistor Sensors

被引:11
|
作者
Choi, Dongsun [1 ]
Park, Mihyeon [1 ]
Jeong, Juyeon [1 ]
Shin, Hang-Beum [2 ]
Choi, Yun Chang [1 ]
Jeong, Kwang Seob [1 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] LG Chem Ltd, Corp R&D, 30 Magokjungang 10 Ro, Seoul 07796, South Korea
基金
新加坡国家研究基金会;
关键词
self-doped nanocrystal; gas sensor; probe-free biosensor; mid-IR photodetector; TFT sensor; QUANTUM DOTS; TRANSITION;
D O I
10.1021/acsami.8b16083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-doping in nanocrystals allows accessing higher quantum states. The electrons occupying the lowest energy state of the conduction band form a metastable state that is very sensitive to the electrostatic potential of the surface. Here, we demonstrate that the high charge sensitivity of the self-doped HgSe colloidal quantum dot solid can be used for sensing three different targets with different phases through self-doped HgSe nanocrystal/ZnO thin-film transistors: the environmental gases (CO2 gas, NO gas, and H2S gas); mid-IR photon; and biothiol (L-cysteine) molecules. The self-doped quantum dot solid detects the targets through different mechanisms. The physisorption of the CO2 gas and the NO gas molecules, and the mid-IR photodetection show reversible processes, whereas the chemisorption of L-cysteine biothiol and H2S gas molecules shows irreversible processes. Considering the quenching of mid-IR intraband photoluminescence of the HgSe colloidal quantum dot solid by the vibrational mode of the CO2 gas molecule, sensing the CO2 gas could be involved in the electronic-to-vibrational energy transfer. The target molecules are quantitatively analyzed, and the limits of detection for CO2 and L-cysteine are 250 ppm and 10 nM, respectively, which are comparable to the performance of commercial detectors.
引用
收藏
页码:7242 / 7249
页数:8
相关论文
共 50 条
  • [31] Thin-film wear sensors
    不详
    INDUSTRIAL CERAMICS, 1998, 18 (02): : 115 - 115
  • [32] THIN-FILM TRANSDUCERS AND SENSORS
    ANDERSON, JC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1986, 4 (03): : 610 - 616
  • [33] THIN-FILM SENSORS FOR AUTOMOBILES
    TAGA, Y
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (03): : 990 - 995
  • [34] THIN-FILM WEAR SENSORS
    HAHN, FW
    WEAR, 1981, 74 (01) : 157 - 164
  • [35] THIN-FILM GAS SENSORS
    EMMER, I
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1992, 73 (05) : 875 - 879
  • [36] Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties
    Xu, Chunyan
    Chen, Wensi
    Gao, Haiping
    Xie, Xing
    Chen, Yongsheng
    ENVIRONMENTAL SCIENCE-NANO, 2020, 7 (03) : 803 - 816
  • [37] Self-Healing Thin-Film Transistor Circuits on Flexible Substrates
    Ding, Li
    Joshi, Pushkaraj
    Macdonald, James
    Parab, Virendra
    Sambandan, Sanjiv
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (03)
  • [38] FABRICATION PROCESSES FOR THE THIN-FILM TRANSISTOR
    VANCALSTER, A
    THIN SOLID FILMS, 1985, 126 (3-4) : 219 - 225
  • [39] Ambipolar Oxide Thin-Film Transistor
    Nomura, Kenji
    Kamiya, Toshio
    Hosono, Hideo
    ADVANCED MATERIALS, 2011, 23 (30) : 3431 - +
  • [40] A THIN-FILM TRANSISTOR WITH POLYTETRAFLUOROETHYLENE AS INSULATOR
    DEVOS, A
    HINDRYCKX, B
    IEE PROCEEDINGS-I COMMUNICATIONS SPEECH AND VISION, 1980, 127 (01): : 42 - 44