Multifunctional Self-Doped Nanocrystal Thin-Film Transistor Sensors

被引:11
|
作者
Choi, Dongsun [1 ]
Park, Mihyeon [1 ]
Jeong, Juyeon [1 ]
Shin, Hang-Beum [2 ]
Choi, Yun Chang [1 ]
Jeong, Kwang Seob [1 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] LG Chem Ltd, Corp R&D, 30 Magokjungang 10 Ro, Seoul 07796, South Korea
基金
新加坡国家研究基金会;
关键词
self-doped nanocrystal; gas sensor; probe-free biosensor; mid-IR photodetector; TFT sensor; QUANTUM DOTS; TRANSITION;
D O I
10.1021/acsami.8b16083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-doping in nanocrystals allows accessing higher quantum states. The electrons occupying the lowest energy state of the conduction band form a metastable state that is very sensitive to the electrostatic potential of the surface. Here, we demonstrate that the high charge sensitivity of the self-doped HgSe colloidal quantum dot solid can be used for sensing three different targets with different phases through self-doped HgSe nanocrystal/ZnO thin-film transistors: the environmental gases (CO2 gas, NO gas, and H2S gas); mid-IR photon; and biothiol (L-cysteine) molecules. The self-doped quantum dot solid detects the targets through different mechanisms. The physisorption of the CO2 gas and the NO gas molecules, and the mid-IR photodetection show reversible processes, whereas the chemisorption of L-cysteine biothiol and H2S gas molecules shows irreversible processes. Considering the quenching of mid-IR intraband photoluminescence of the HgSe colloidal quantum dot solid by the vibrational mode of the CO2 gas molecule, sensing the CO2 gas could be involved in the electronic-to-vibrational energy transfer. The target molecules are quantitatively analyzed, and the limits of detection for CO2 and L-cysteine are 250 ppm and 10 nM, respectively, which are comparable to the performance of commercial detectors.
引用
收藏
页码:7242 / 7249
页数:8
相关论文
共 50 条
  • [21] THEORY OF THIN-FILM TRANSISTOR
    ANDERSON, JC
    THIN SOLID FILMS, 1976, 38 (02) : 151 - 161
  • [22] A Multifunctional Polymer-Graphene Thin-Film Transistor with Tunable Transport Regimes
    Mosciatti, Thomas
    Haar, Sebastien
    Liscio, Fabiola
    Ciesielski, Artur
    Orgiu, Emanuele
    Samori, Paolo
    ACS NANO, 2015, 9 (03) : 2357 - 2367
  • [23] Self-organized process for patterning of a thin-film transistor
    Choo, Byoung-Kwon
    Choi, Jung-Su
    Kim, Gun-Jeong
    Park, Kyu-Cang
    Jang, Jin
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (06) : 1719 - 1722
  • [24] Transparent thin-film transistor with self-assembled nanocrystals
    Zhang, Qiaohui
    Saraf, L. V.
    Hua, Feng
    NANOTECHNOLOGY, 2007, 18 (19)
  • [25] THIN-FILM TRANSISTOR SWITCHING OF THIN-FILM ELECTROLUMINESCENT DISPLAY ELEMENTS
    KUN, ZK
    LUO, FC
    MURPHY, J
    PROCEEDINGS OF THE SID, 1980, 21 (02): : 85 - 91
  • [26] Artificial retina using thin-film photodiode and thin-film transistor
    Kimura, Mutsumi
    Shima, Takehiro
    Yamashita, Takehiko
    IMID/IDMC 2006: THE 6TH INTERNATIONAL MEETING ON INFORMATION DISPLAY/THE 5TH INTERNATIONAL DISPLAY MANUFACTURING CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2006, : 1787 - 1790
  • [27] Sensitivity improvement of polysilicon thin-film transistor-based magnetic sensors
    Carvou, E
    Le Bihan, F
    Rogel, R
    Bonnaud, O
    POLYCRYSTALLINE SEMICONDUCTORS VII, PROCEEDINGS, 2003, 93 : 459 - 464
  • [28] Ultralow drift in organic thin-film transistor chemical sensors by pulsed gating
    Yang, Richard D.
    Park, Jeongwon
    Colesniuc, Comeliu N.
    Schuller, Ivan K.
    Trogler, William C.
    Kummel, Andrew C.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (03)
  • [29] Induced Sensitivity and Selectivity in Thin-Film Transistor Sensors via Calixarene Layers
    Sokolov, Anatoliy N.
    Roberts, Mark E.
    Johnson, Olasupo B.
    Cao, Yadong
    Bao, Zhenan
    ADVANCED MATERIALS, 2010, 22 (21) : 2349 - 2353
  • [30] Design of a Multifunctional Double-Active-Layer Thin-Film Transistor for Photosensing Applications
    Han, Sang Youn
    Jeon, Kyung Sook
    Seo, Seung Mi
    Seo, Mi Seon
    Jung, Suk-Won
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (01) : 66 - 68