Multifunctional Self-Doped Nanocrystal Thin-Film Transistor Sensors

被引:11
|
作者
Choi, Dongsun [1 ]
Park, Mihyeon [1 ]
Jeong, Juyeon [1 ]
Shin, Hang-Beum [2 ]
Choi, Yun Chang [1 ]
Jeong, Kwang Seob [1 ]
机构
[1] Korea Univ, Dept Chem, Seoul 02841, South Korea
[2] LG Chem Ltd, Corp R&D, 30 Magokjungang 10 Ro, Seoul 07796, South Korea
基金
新加坡国家研究基金会;
关键词
self-doped nanocrystal; gas sensor; probe-free biosensor; mid-IR photodetector; TFT sensor; QUANTUM DOTS; TRANSITION;
D O I
10.1021/acsami.8b16083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-doping in nanocrystals allows accessing higher quantum states. The electrons occupying the lowest energy state of the conduction band form a metastable state that is very sensitive to the electrostatic potential of the surface. Here, we demonstrate that the high charge sensitivity of the self-doped HgSe colloidal quantum dot solid can be used for sensing three different targets with different phases through self-doped HgSe nanocrystal/ZnO thin-film transistors: the environmental gases (CO2 gas, NO gas, and H2S gas); mid-IR photon; and biothiol (L-cysteine) molecules. The self-doped quantum dot solid detects the targets through different mechanisms. The physisorption of the CO2 gas and the NO gas molecules, and the mid-IR photodetection show reversible processes, whereas the chemisorption of L-cysteine biothiol and H2S gas molecules shows irreversible processes. Considering the quenching of mid-IR intraband photoluminescence of the HgSe colloidal quantum dot solid by the vibrational mode of the CO2 gas molecule, sensing the CO2 gas could be involved in the electronic-to-vibrational energy transfer. The target molecules are quantitatively analyzed, and the limits of detection for CO2 and L-cysteine are 250 ppm and 10 nM, respectively, which are comparable to the performance of commercial detectors.
引用
收藏
页码:7242 / 7249
页数:8
相关论文
共 50 条
  • [1] MULTIFUNCTIONAL MAGNETIC THIN-FILM SENSORS
    TAKEUCHI, S
    ICHIOKA, S
    INOUYE, T
    ELECTRICAL ENGINEERING IN JAPAN, 1974, 94 (04) : 118 - 124
  • [2] P-type Si nanocrystal Thin-Film Transistor
    Zhou, Xin
    Rafiq, M. A.
    Mizuta, Hiroshi
    Oda, Shunri
    2008 IEEE SILICON NANOELECTRONICS WORKSHOP, 2008, : 113 - +
  • [3] Organic Thin-Film Transistor Memory with Nanocrystal Carbon Dots
    Tada, Yoshihiro
    Mohamad, Khairul A.
    Uesugi, Katsuhiro
    Fukuda, Hisashi
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2010, 8 : 250 - 253
  • [4] Transport in a Single Self-Doped Nanocrystal
    Wang, Hongyue
    Lhuillier, Emmanuel
    Yu, Qian
    Zimmers, Alexandre
    Dubertret, Benoit
    Ulysse, Christian
    Aubin, Herve
    ACS NANO, 2017, 11 (02) : 1222 - 1229
  • [5] Contact effects in organic thin-film transistor sensors
    Torsi, Luisa
    Marinelli, Francesco
    Angione, M. Daniela
    Dell'Aquila, Antonio
    Cioffi, Nicola
    De Giglio, Elvira
    Sabbatini, Luigia
    ORGANIC ELECTRONICS, 2009, 10 (02) : 233 - 239
  • [6] Organic Thin-Film Transistor (OTFT)-Based Sensors
    Elkington, Daniel
    Cooling, Nathan
    Belcher, Warwick
    Dastoor, Paul C.
    Zhou, Xiaojing
    ELECTRONICS, 2014, 3 (02) : 234 - 254
  • [7] Hemispherical thin-film transistor passive pixel sensors
    Yoo, Geonwook
    Fung, Tze-Ching
    Radtke, Daniela
    Stumpf, Marko
    Zeitner, Uwe
    Kanicki, Jerzy
    SENSORS AND ACTUATORS A-PHYSICAL, 2010, 158 (02) : 280 - 283
  • [8] THIN-FILM TRANSISTOR
    DEGRAAFF, HC
    KOELMANS, H
    PHILIPS TECHNICAL REVIEW, 1966, 27 (07): : 200 - +
  • [9] Material and device considerations for organic thin-film transistor sensors
    Roberts, Mark E.
    Sokolov, Anatoliy N.
    Bao, Zhenan
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (21) : 3351 - 3363
  • [10] In-situ fluorine-doped ZnSnO thin film and thin-film transistor?
    Yin, Xuemei
    Lin, Delang
    Zhong, Wei
    Chen, Yayi
    Li, Guijun
    Li, Yi
    Chen, Rongsheng
    SOLID-STATE ELECTRONICS, 2023, 208