Optofluidic Near-Field Optical Microscopy: Near-Field Mapping of a Silicon Nanocavity Using Trapped Microbeads

被引:19
|
作者
Pin, Christophe [1 ,2 ,3 ,4 ]
Cluzel, Benoit [1 ]
Renaut, Claude [1 ,2 ,3 ,4 ]
Picard, Emmanuel [2 ,3 ]
Peyrade, David [4 ]
Hadji, Emmanuel [2 ,3 ]
de Fornel, Frederique [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, Grp Opt Champ Proche LRC SiNOPTIQ CEA DSM 08 36, UMR CNRS 6303, F-21078 Dijon, France
[2] Univ Grenoble Alpes, INAC SINAPS SP2M, F-38000 Grenoble, France
[3] CEA, INAC SINAPS SP2M, F-38000 Grenoble, France
[4] Univ Grenoble Alpes, CNRS, CEA Leti Minatec, LTM, F-38054 Grenoble, France
来源
ACS PHOTONICS | 2015年 / 2卷 / 10期
关键词
photonic crystal; optical tweezers; near-field optical forces; photonic force microscopy; optical lattice; near-field optical microscopy; PHOTONIC CRYSTAL; WAVE-GUIDE; PLASMONIC NANOTWEEZERS; STANDING-WAVE; TWEEZERS; MANIPULATION; PARTICLES; NANOPARTICLE; ARRAYS; CAVITY;
D O I
10.1021/acsphotonics.5b00353
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By analyzing the thermal motion of fluorescent dielectric microbeads trapped in the near-field of a silicon nanocavity, we investigate the influence of the bead's size and the trapping laser power on the shape of the optical trap and the "effective" trap stiffness. We demonstrate that the trapping potential is proportional to the subwavelength patterns of the electromagnetic near-field intensity distribution for unexpectedly large Mie particle sizes. More especially, we show that mapping the trapping potential experienced by a 500 nm diameter bead reveals the nanopattems of the cavity resonant mode. This result highlights how photonic force microscopy in nanotweezers can provide an elegant way to image evanescent fields at the nanoscale via the thermal motion of optically trapped fluorescent microprobes.
引用
收藏
页码:1410 / 1415
页数:6
相关论文
共 50 条
  • [41] Scanning near-field optical microscopy by near-field reflectance enhancement: a versatile and valid technique
    Kaupp, G
    Herrmann, A
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 1999, 12 (02) : 141 - 143
  • [42] Near-field optics and near-field microscopy: the basic principles and their applications
    Zhu, Xing
    Beijing Daxue Xuebao Ziran Kexue Ban/Acta Scientiarum uaturalium Universitatis Pekinensis, 1997, 33 (03): : 394 - 406
  • [43] Near-field imaging of optical resonances in silicon metasurfaces using photoelectron microscopy
    Boehm, Alex
    Gennaro, Sylvain D.
    Doiron, Chloe F.
    Beechem, Thomas E.
    Sinclair, Michael B.
    Brener, Igal
    Sarma, Raktim
    Ohta, Taisuke
    APL PHOTONICS, 2024, 9 (06)
  • [44] Quantitative Modeling of Near-Field Interactions in Terahertz Near-Field Microscopy
    Peng, Zhaomin
    Zhang, Dehai
    Ge, Shuqi
    Meng, Jin
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [45] Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy
    Ritchie, Earl T.
    Hill, David J.
    Mastin, Tucker M.
    Deguzman, Panfilo C.
    Cahoon, James F.
    Atkin, Joanna M.
    NANO LETTERS, 2017, 17 (11) : 6591 - 6597
  • [46] Mapping three-dimensional near-field responses with reconstruction scattering-type scanning near-field optical microscopy
    Wang, Haomin
    Wang, Le
    Jakob, Devon S.
    Xu, Xiaoji G.
    AIP ADVANCES, 2017, 7 (05):
  • [47] Femtosecond near-field scanning optical microscopy
    Nechay, BA
    Siegner, U
    Achermann, M
    Morier-Genaud, F
    Schertel, A
    Keller, U
    JOURNAL OF MICROSCOPY-OXFORD, 1999, 194 : 329 - 334
  • [48] SCANNING NEAR-FIELD OPTICAL MICROSCOPY (SNOM)
    POHL, DW
    FISCHER, UC
    DURIG, UT
    JOURNAL OF MICROSCOPY-OXFORD, 1988, 152 : 853 - 861
  • [49] Near-field optical microscopy in the infrared range
    Piednoir, A
    Creuzet, F
    MICRON, 1996, 27 (05) : 335 - 339
  • [50] Modulation techniques in near-field optical microscopy
    Labardi, M
    Patané, S
    Allegrini, N
    NANOMETER SCALE SCIENCE AND TECHNOLOGY, 2001, 144 : 425 - 435