Optofluidic Near-Field Optical Microscopy: Near-Field Mapping of a Silicon Nanocavity Using Trapped Microbeads

被引:19
|
作者
Pin, Christophe [1 ,2 ,3 ,4 ]
Cluzel, Benoit [1 ]
Renaut, Claude [1 ,2 ,3 ,4 ]
Picard, Emmanuel [2 ,3 ]
Peyrade, David [4 ]
Hadji, Emmanuel [2 ,3 ]
de Fornel, Frederique [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Interdisciplinaire Carnot Bourgogne, Grp Opt Champ Proche LRC SiNOPTIQ CEA DSM 08 36, UMR CNRS 6303, F-21078 Dijon, France
[2] Univ Grenoble Alpes, INAC SINAPS SP2M, F-38000 Grenoble, France
[3] CEA, INAC SINAPS SP2M, F-38000 Grenoble, France
[4] Univ Grenoble Alpes, CNRS, CEA Leti Minatec, LTM, F-38054 Grenoble, France
来源
ACS PHOTONICS | 2015年 / 2卷 / 10期
关键词
photonic crystal; optical tweezers; near-field optical forces; photonic force microscopy; optical lattice; near-field optical microscopy; PHOTONIC CRYSTAL; WAVE-GUIDE; PLASMONIC NANOTWEEZERS; STANDING-WAVE; TWEEZERS; MANIPULATION; PARTICLES; NANOPARTICLE; ARRAYS; CAVITY;
D O I
10.1021/acsphotonics.5b00353
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By analyzing the thermal motion of fluorescent dielectric microbeads trapped in the near-field of a silicon nanocavity, we investigate the influence of the bead's size and the trapping laser power on the shape of the optical trap and the "effective" trap stiffness. We demonstrate that the trapping potential is proportional to the subwavelength patterns of the electromagnetic near-field intensity distribution for unexpectedly large Mie particle sizes. More especially, we show that mapping the trapping potential experienced by a 500 nm diameter bead reveals the nanopattems of the cavity resonant mode. This result highlights how photonic force microscopy in nanotweezers can provide an elegant way to image evanescent fields at the nanoscale via the thermal motion of optically trapped fluorescent microprobes.
引用
收藏
页码:1410 / 1415
页数:6
相关论文
共 50 条
  • [21] Scanning near-field optical microscopy
    Fokas, CS
    NACHRICHTEN AUS CHEMIE TECHNIK UND LABORATORIUM, 1999, 47 (06): : 648 - +
  • [22] Apertureless near-field optical microscopy
    Patané, S
    Gucciardi, PG
    Labardi, M
    Allegrini, M
    RIVISTA DEL NUOVO CIMENTO, 2004, 27 (01): : 1 - 46
  • [23] REFLECTION NEAR-FIELD OPTICAL MICROSCOPY
    SPAJER, M
    COURJON, D
    SARAYEDDINE, K
    JALOCHA, A
    VIGOUREUX, JM
    JOURNAL DE PHYSIQUE III, 1991, 1 (01): : 1 - 12
  • [24] Near-field scanning optical microscopy
    Buratto, SK
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1996, 1 (04): : 485 - 492
  • [25] Artefacts in Near-Field Optical Microscopy
    Klapetek, Petr
    Bursik, Jiri
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2007, 61 : 570 - 575
  • [26] RESOLUTION IN NEAR-FIELD OPTICAL MICROSCOPY
    ISAACSON, M
    CLINE, J
    BARSHATZKY, H
    ULTRAMICROSCOPY, 1992, 47 (1-3) : 15 - 22
  • [27] Active Near-Field Optical Microscopy
    Le Gac, Gaelle
    Rahmani, Adel
    Seassal, Christian
    Picard, Emmanuel
    Hadji, Emmanuel
    Callard, Segolene
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 2123 - +
  • [28] Near-field optical microscopy in liquids
    Seiko Instruments Inc, Chiba, Japan
    Appl Phys Lett, 24 (3245-3247):
  • [29] Apertureless near-field optical microscopy
    S. Patanè
    P. G. Gucciardi
    M. Labardi
    M. Allegrini
    La Rivista del Nuovo Cimento, 2004, 27 (1) : 1 - 46
  • [30] Cloaked near-field probe for non-invasive near-field optical microscopy
    Arango, Felipe Bernal
    Alpeggiani, Filippo
    Conteduca, Donato
    Opheij, Aron
    Chen, Aobo
    Abdelrahman, Mohamed, I
    Krauss, Thomas F.
    Alu, Andrea
    Monticone, Francesco
    Kuipers, Laurens
    OPTICA, 2022, 9 (07): : 684 - 691