HEAT KERNELS OF METRIC TREES AND APPLICATIONS

被引:6
|
作者
Frank, Rupert L. [1 ]
Kovarik, Hynek [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Brescia, Dipartimento Matemat, I-25123 Brescia, Italy
关键词
heat kernel; metric tree; eigenvalue estimate; Sobolev inequality; SCHRODINGER-OPERATORS; INEQUALITIES; EIGENVALUES; HARDY; ROZENBLUM;
D O I
10.1137/120886297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the heat semigroup generated by the Laplace operator on metric trees. Among our results we show how the behavior of the associated heat kernel depends on the geometry of the tree. As applications we establish new eigenvalue estimates for Schrodinger operators on metric trees.
引用
收藏
页码:1027 / 1046
页数:20
相关论文
共 50 条
  • [11] Heat kernels on weighted manifolds and applications
    Grigor'yan, A
    UBIQUITOUS HEAT KERNEL, 2006, 398 : 93 - 191
  • [12] Analysis on Ultra-Metric Spaces via Heat Kernels
    Alexander Grigor’yan
    p-Adic Numbers, Ultrametric Analysis and Applications, 2023, 15 : 204 - 242
  • [13] Analysis on Ultra-Metric Spaces via Heat Kernels
    Grigor'yan, Alexander
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2023, 15 (03) : 204 - 242
  • [14] TWO-SIDED ESTIMATES OF HEAT KERNELS ON METRIC MEASURE SPACES
    Grigor'yan, Alexander
    Telcs, Andras
    ANNALS OF PROBABILITY, 2012, 40 (03): : 1212 - 1284
  • [15] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Marola, Niko
    Miranda, Michele, Jr.
    Shanmugalingam, Nageswari
    POTENTIAL ANALYSIS, 2016, 45 (04) : 609 - 633
  • [16] Characterizations of Sets of Finite Perimeter Using Heat Kernels in Metric Spaces
    Niko Marola
    Michele Miranda
    Nageswari Shanmugalingam
    Potential Analysis, 2016, 45 : 609 - 633
  • [17] Heat kernels on metric measure spaces and an application to semilinear elliptic equations
    Grigor'yan, A
    Hu, JX
    Lau, KS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (05) : 2065 - 2095
  • [18] The Li-Yau inequality and heat kernels on metric measure spaces
    Jiang, Renjin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 29 - 57
  • [19] HEAT KERNELS FOR MANIFOLDS WITH BOUNDARY - APPLICATIONS TO CHARGED MEMBRANES
    MCAVITY, DM
    OSBORN, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (11): : 3287 - 3294
  • [20] Large time behavior of Schrodinger heat kernels and applications
    Zhang, QS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) : 371 - 398