Heat kernels on metric measure spaces and an application to semilinear elliptic equations

被引:108
|
作者
Grigor'yan, A
Hu, JX
Lau, KS
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
[2] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
[3] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
D O I
10.1090/S0002-9947-03-03211-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a metric measure space (M, d, mu) and a heat kernel p(t) (x, y) on M satisfying certain upper and lower estimates, which depend on two parameters alpha and beta. We show that under additional mild assumptions, these parameters are determined by the intrinsic properties of the space (M, d, mu). Namely, alpha is the Hausdorff dimension of this space, whereas beta, called the walk dimension, is determined via the properties of the family of Besov spaces W-sigma,W-2 on M. Moreover, the parameters alpha and beta are related by the inequalities 2 less than or equal to beta less than or equal to alpha + 1. We prove also the embedding theorems for the space W-beta/2,W-2, and use them to obtain the existence results for weak solutions to semilinear elliptic equations on M of the form -Lu + f(x, u) = g(x), where C is the generator of the semigroup associated with p(t). The framework in this paper is applicable for a large class of fractal domains, including the generalized Sierpiniski carpet in R-n.
引用
收藏
页码:2065 / 2095
页数:31
相关论文
共 50 条
  • [1] HEAT KERNELS AND BESOV SPACES ON METRIC MEASURE SPACES
    Cao, Jun
    Grigor'yan, Alexander
    JOURNAL D ANALYSE MATHEMATIQUE, 2022, 148 (02): : 637 - 680
  • [2] Heat kernels and Besov spaces on metric measure spaces
    Jun Cao
    Alexander Grigor’yan
    Journal d'Analyse Mathématique, 2022, 148 : 637 - 680
  • [3] Heat Kernels on Metric Spaces with Doubling Measure
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 3 - +
  • [4] OPTIMAL CONTROL OF SEMILINEAR ELLIPTIC EQUATIONS IN MEASURE SPACES
    Casas, Eduardo
    Kunisch, Karl
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 339 - 364
  • [5] Heat Kernels and Green Functions on Metric Measure Spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 641 - 699
  • [6] Comparison inequalities for heat semigroups and heat kernels on metric measure spaces
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) : 2613 - 2641
  • [7] TWO-SIDED ESTIMATES OF HEAT KERNELS ON METRIC MEASURE SPACES
    Grigor'yan, Alexander
    Telcs, Andras
    ANNALS OF PROBABILITY, 2012, 40 (03): : 1212 - 1284
  • [8] The Li-Yau inequality and heat kernels on metric measure spaces
    Jiang, Renjin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 29 - 57
  • [9] Quasidifferential equations in semilinear metric spaces
    Plotnikov V.A.
    Ukrainian Mathematical Journal, 1998, 50 (1) : 170 - 176
  • [10] COMPARISON OF HARMONIC KERNELS ASSOCIATED WITH A CLASS OF SEMILINEAR ELLIPTIC EQUATIONS
    Ben Fredj, Mahmoud
    El Mabrouk, Khalifa
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2013, 33 (01): : 29 - 44