GaAs nanopillar-array solar cells employing in situ surface passivation

被引:194
|
作者
Mariani, Giacomo [1 ]
Scofield, Adam C. [1 ]
Hung, Chung-Hong [1 ]
Huffaker, Diana L. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
美国国家科学基金会;
关键词
OPTICAL-ABSORPTION ENHANCEMENT; CORE-SHELL NANOWIRES; DOPANT DISTRIBUTION; SILICON NANOWIRES; LIGHT-ABSORPTION; WINDOW LAYER; PERFORMANCE;
D O I
10.1038/ncomms2509
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Arrays of III-V direct-bandgap semiconductor nanopillars represent promising photovoltaic candidates due to their inherent high optical absorption coefficients and minimized reflection arising from light trapping, efficient charge collection in the radial direction and the ability to synthesize them on low-cost platforms. However, the increased surface area results in surface states that hamper the power conversion efficiency. Here, we report the first demonstration of GaAs nanopillar-array photovoltaics employing epitaxial passivation with air mass 1.5 global power conversion efficiencies of 6.63%. High-bandgap epitaxial InGaP shells are grown in situ and cap the radial p-n junctions to alleviate surface-state effects. Under light, the photovoltaic devices exhibit open-circuit voltages of 0.44 V, short-circuit current densities of 24.3 mA cm(-2) and fill factors of 62% with high external quantum efficiencies > 70% across the spectral regime of interest. A novel titanium/indium tin oxide annealed alloy is exploited as transparent ohmic anode.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Design of Passivation Layers on Axial Junction GaAs Nanowire Solar Cells
    Huang, Ningfeng
    Povinelli, Michelle L.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (06): : 1511 - 1517
  • [22] Surface passivation of perovskite film for efficient solar cells
    Jiang, Qi
    Zhao, Yang
    Zhang, Xingwang
    Yang, Xiaolei
    Chen, Yong
    Chu, Zema
    Ye, Qiufeng
    Li, Xingxing
    Yin, Zhigang
    You, Jingbi
    NATURE PHOTONICS, 2019, 13 (07) : 460 - +
  • [23] Improving the performance of perovskite solar cells by surface passivation
    Han, Wenbin
    Ren, Guanhua
    Li, Zhiqi
    Dong, Minnan
    Liu, Chunyu
    Guo, Wenbin
    JOURNAL OF ENERGY CHEMISTRY, 2020, 46 : 202 - 207
  • [24] Application of various surface passivation layers in solar cells
    Lee, JY
    Lee, SH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (02) : 558 - 563
  • [25] Carrier population control and surface passivation in solar cells
    Cuevas, Andres
    Wan, Yimao
    Yan, Di
    Samundsett, Christian
    Allen, Thomas
    Zhang, Xinyu
    Cui, Jie
    Bullock, James
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 184 : 38 - 47
  • [26] Surface Passivation to Improve the Performance of Perovskite Solar Cells
    Lee, Hayeon
    Li, Dawen
    ENERGIES, 2024, 17 (21)
  • [27] Dielectric surface passivation for silicon solar cells: A review
    Bonilla, Ruy S.
    Hoex, Bram
    Hamer, Phillip
    Wilshaw, Peter R.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2017, 214 (07):
  • [28] Improving the performance of perovskite solar cells by surface passivation
    Wenbin Han
    Guanhua Ren
    Zhiqi Li
    Minnan Dong
    Chunyu Liu
    Wenbin Guo
    Journal of Energy Chemistry, 2020, 46 (07) : 202 - 207
  • [29] Low temperature surface passivation of silicon solar cells
    Ghaisas, S. V.
    Shinde, O. S.
    Dusane, R. O.
    Dhere, N. G.
    2016 IEEE 43RD PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2016, : 2889 - 2892
  • [30] Low temperature surface passivation for silicon solar cells
    Leguijt, C
    Lolgen, P
    Eikelboom, JA
    Weeber, AW
    Schuurmans, FM
    Sinke, WC
    Alkemade, PFA
    Sarro, PM
    Maree, CHM
    Verhoef, LA
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1996, 40 (04) : 297 - 345