Numerical modeling of liquid water motion in a polymer electrolyte fuel cell

被引:46
|
作者
Jiang, Fangming [1 ,2 ]
Wang, Chao-Yang [2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Renewable Energy, Lab Adv Energy Syst, Guangzhou 510640, Guangdong, Peoples R China
[2] Penn State Univ, Dept Mech & Nucl Engn, Electrochem Engine Ctr ECEC, University Pk, PA 16802 USA
关键词
Polymer electrolyte fuel cell; Computational fuel cell dynamics; Multiphase mixture model; Water management; 2-PHASE FLOW; TRANSPORT; CATHODE; VISUALIZATION; PREDICTION; MULTIPHASE; PEMFC; MEDIA;
D O I
10.1016/j.ijhydene.2013.10.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A three dimensional transient model fully coupling the two phase flow, species transport, heat transport, and electrochemical processes is developed to investigate the liquid water formation and transport in a polymer electrolyte fuel cell (PEFC). This model is based on the multiphase mixture (M2) formulation with a complete treatment of two phase transport throughout the PEFC, including gas channels, enabling modeling the liquid water motion in the entire PEFC. This work particularly focuses on the liquid water accumulation and transport in gas channels. It is revealed that the liquid water accumulation in gas channels mainly relies on three mechanisms and in the anode and cathode may rely on different mechanisms. The transport of liquid water in the anode channel basically follows a condensation evaporation mechanism, in sharp contrast to the hydrodynamic transport of liquid water in the cathode channel. Liquid water in the cathode channel can finally flow outside from the exit along with the exhaust gas. As the presence of liquid water in gas channels alters the flow regime involved, from the single phase homogeneous flow to two phase flow, the flow resistance is found to significantly increase. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:942 / 950
页数:9
相关论文
共 50 条
  • [31] Optimization of polymer electrolyte fuel cell cathode catalyst layers via direct numerical simulation modeling
    Wang, Guoqing
    Mukherjee, Partha P.
    Wang, Chao-Yang
    ELECTROCHIMICA ACTA, 2007, 52 (22) : 6367 - 6377
  • [32] Water transport characteristics of polymer electrolyte membrane fuel cell
    Rajalakshmi, N
    Jayanth, TT
    Thangamuthu, R
    Sasikumar, G
    Sridhar, P
    Dhathathreyan, KS
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (10) : 1009 - 1014
  • [33] In situ water distribution measurements in a polymer electrolyte fuel cell
    Mench, MM
    Dong, QL
    Wang, CY
    JOURNAL OF POWER SOURCES, 2003, 124 (01) : 90 - 98
  • [34] Water balance and multiplicity in a polymer electrolyte membrane fuel cell
    Chia, ESJ
    Benziger, JB
    Kevrekidis, IG
    AICHE JOURNAL, 2004, 50 (09) : 2320 - 2324
  • [35] MODELLING OF WATER TRANSPORT IN THE POLYMER ELECTROLYTE MEMBRANE OF A FUEL CELL
    Simek, Martin
    Nemec, Tomas
    Marsik, Frantisek
    EXPERIMENTAL FLUID MECHANICS 2010, 2010, : 670 - 689
  • [36] The effect of cathodic water on performance of a polymer electrolyte fuel cell
    Kulikovsky, AA
    ELECTROCHIMICA ACTA, 2004, 49 (28) : 5187 - 5196
  • [37] HEAT AND WATER TRANSPORT IN A POLYMER ELECTROLYTE FUEL CELL ELECTRODE
    Mukherjee, Partha P.
    Ranjan, Devesh
    Mukundan, Rangachary
    Borup, Rodney L.
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 5: FUEL CELLS, GAS TURBINES, HEAT PIPES, JET IMPINGEMENT, RADIATION, 2010, : 53 - 59
  • [38] Modeling water phenomena in the cathode side of polymer electrolyte fuel cells
    Zhang, Yufan
    Agravante, Gerard
    Kadyk, Thomas
    Eikerling, Michael H.
    ELECTROCHIMICA ACTA, 2023, 452
  • [39] Numerical Simulation of Liquid Water Transport in a Multiperforated Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
    Yin, Bifeng
    Zhang, Xu
    Xu, Sheng
    Xie, Xuan
    Dong, Fei
    JOURNAL OF ENERGY ENGINEERING, 2023, 149 (02)
  • [40] Numerical study of gas purge in polymer electrolyte membrane fuel cell
    Ding, Jing
    Mu, Yu-Tong
    Zhai, Shuang
    Tao, Wen-Quan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 103 : 744 - 752