Vibrational excitations of proteins and their hydration water in the far-infrared range

被引:10
|
作者
Paciaroni, A. [1 ]
Nibali, V. Conti [2 ]
Orecchini, A. [1 ,3 ]
Petrillo, C. [1 ]
Haertlein, M. [3 ]
Moulin, M. [3 ]
Tarek, M. [4 ]
D'Angelo, G. [5 ]
Sacchetti, F. [1 ]
机构
[1] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[2] Ruhr Univ Bochum, Lehrstuhl Phys Chem 2, D-44780 Bochum, Germany
[3] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
[4] Nancy Univ, CNRS, UMR Struct & React Syst Mol Complexes, Nancy, France
[5] Univ Messina, Dipartimento Fis, I-98166 Messina, Italy
关键词
Protein dynamics; Vibrational density of states; Inelastic neutron scattering; Molecular dynamics simulations; Maltose binding protein; Biological water; NEUTRON-SCATTERING; MOLECULAR-DYNAMICS; COPPER AZURIN; STATES; SPECTROSCOPY; MYOGLOBIN; ANOMALIES;
D O I
10.1016/j.chemphys.2013.05.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incoherent neutron scattering has been used to single out the vibrational contribution from maltose binding protein (MBP) and its hydration water in the energy range 1 meV-80 meV. The vibrational density of states from both protein and hydration water have been investigated by measuring respectively dry and D2O-hydrated isotopically natural MBP and dry and H2O-hydrated perdeuterated MBP. Molecular dynamics simulations done on the same system allow us to attribute the protein inelastic features. The inelastic behavior of the biomolecule seems to be largely independent on the presence of solvent. Conversely, protein hydration water exhibits remarkable differences with respect to hexagonal ice in the whole spectral range, with clear similarities to amorphous phases of ice. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:80 / 83
页数:4
相关论文
共 50 条
  • [31] Negative dynamic mobility of electrons in silicon in the far-infrared range
    Brazis, R
    Asadauskas, L
    Raguotis, R
    Siegrist, MR
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1997, 18 (06): : 1217 - 1222
  • [32] AN ALGEBRAIC MODELIZATION FOR FIBER OPTIC TRANSMISSION AT THE FAR-INFRARED RANGE
    CAFFARO, MAG
    CAFFARO, MG
    OPTIK, 1994, 96 (03): : 101 - 106
  • [33] Highly Efficient Metasurface Polarization Converter at Far-Infrared Range
    Tamim, Ahmed Mahfuz
    Hasan, Md Mehedi
    Faruque, Mohammad Rashed Iqbal
    FRONTIERS IN PHYSICS, 2022, 10
  • [34] Transformation-induced evolution of far-infrared vibrational nlodes in theophylline
    Upadhya, PC
    Nguyen, KL
    Shen, YC
    Obradovic, J
    Fukushige, K
    Griffiths, R
    Gladden, LF
    Davies, AG
    Linfield, EH
    CONFERENCE DIGEST OF THE 2004 JOINT 29TH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES AND 12TH INTERNATIONAL CONFERENCE ON TERAHERTZ ELECTRONICS, 2004, : 429 - 430
  • [35] A far-infrared beamline for ultrahigh vacuum surface vibrational spectroscopy at Aladdin
    Hansen, RWC
    Julian, R
    Kubala, T
    Bosch, RA
    May, T
    Hirschmugl, C
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (03): : 1524 - 1526
  • [36] NEW VIBRATIONAL-MODES IN THE FAR-INFRARED SPECTRA OF GERMANIUM DISELENIDE
    POPOVIC, ZV
    GAJIC, R
    PHYSICAL REVIEW B, 1986, 33 (08) : 5878 - 5879
  • [37] GERMANIUM LASERS IN THE RANGE FROM FAR-INFRARED TO MILLIMETER WAVES
    KOMIYAMA, S
    KURODA, S
    HOSAKO, I
    AKASAKA, Y
    IIZUKA, N
    OPTICAL AND QUANTUM ELECTRONICS, 1991, 23 : S133 - S162
  • [38] Far-infrared dielectric and vibrational properties of nonstoichiometric wustite at high pressure
    Seagle, Christopher T.
    Zhang, Wenxuan
    Heinz, Dion L.
    Liu, Zhenxian
    PHYSICAL REVIEW B, 2009, 79 (01):
  • [39] FAR-INFRARED ABSORPTION, VIBRATIONAL SPECTRA AND STRUCTURE OF BETA-PROPIOLACTONE
    DURIG, JR
    SPECTROCHIMICA ACTA, 1963, 19 (07): : 1225 - 1233
  • [40] Far-infrared excitations in rectangular antidot arrays -: art. no. 033316
    Hochgräfe, M
    van Zyl, BP
    Heyn, C
    Heitmann, D
    Zaremba, E
    PHYSICAL REVIEW B, 2001, 63 (03):