Vibrational excitations of proteins and their hydration water in the far-infrared range

被引:10
|
作者
Paciaroni, A. [1 ]
Nibali, V. Conti [2 ]
Orecchini, A. [1 ,3 ]
Petrillo, C. [1 ]
Haertlein, M. [3 ]
Moulin, M. [3 ]
Tarek, M. [4 ]
D'Angelo, G. [5 ]
Sacchetti, F. [1 ]
机构
[1] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy
[2] Ruhr Univ Bochum, Lehrstuhl Phys Chem 2, D-44780 Bochum, Germany
[3] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
[4] Nancy Univ, CNRS, UMR Struct & React Syst Mol Complexes, Nancy, France
[5] Univ Messina, Dipartimento Fis, I-98166 Messina, Italy
关键词
Protein dynamics; Vibrational density of states; Inelastic neutron scattering; Molecular dynamics simulations; Maltose binding protein; Biological water; NEUTRON-SCATTERING; MOLECULAR-DYNAMICS; COPPER AZURIN; STATES; SPECTROSCOPY; MYOGLOBIN; ANOMALIES;
D O I
10.1016/j.chemphys.2013.05.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incoherent neutron scattering has been used to single out the vibrational contribution from maltose binding protein (MBP) and its hydration water in the energy range 1 meV-80 meV. The vibrational density of states from both protein and hydration water have been investigated by measuring respectively dry and D2O-hydrated isotopically natural MBP and dry and H2O-hydrated perdeuterated MBP. Molecular dynamics simulations done on the same system allow us to attribute the protein inelastic features. The inelastic behavior of the biomolecule seems to be largely independent on the presence of solvent. Conversely, protein hydration water exhibits remarkable differences with respect to hexagonal ice in the whole spectral range, with clear similarities to amorphous phases of ice. (C) 2013 Elsevier B. V. All rights reserved.
引用
收藏
页码:80 / 83
页数:4
相关论文
共 50 条
  • [21] Identification of Genistein and Biochanin A by THz (far-infrared) vibrational spectra
    Yang, Yuping
    Harsha, S. Sree
    Shutler, Alisha J.
    Grischkowsky, Daniel R.
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2012, 62 : 177 - 181
  • [22] The far-infrared continuum in the spectrum of water vapor
    Wang, X
    Senchuk, A
    Tabisz, GC
    WEAKLY INTERACTING MOLECULAR PAIRS: UNCONVENTIONAL ABSORBERS OF RADIATION IN THE ATMOSPHERE, 2003, 27 : 233 - 237
  • [23] ORIGIN OF FAR-INFRARED POLARIZATION OF LIQUID WATER
    WHALLEY, E
    NATURE, 1974, 251 (5472) : 217 - 218
  • [24] FAR-INFRARED RADIATION EFFECT ON THE STRUCTURE AND PROPERTIES OF PROTEINS
    GOVORUN, VM
    TRETIAKOV, VE
    TULYAKOV, NN
    FLEUROV, VB
    DEMIN, AI
    VOLKOV, AY
    BATANOV, VA
    KAPITANOV, AB
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1991, 12 (12): : 1469 - 1474
  • [25] Far-infrared spectroscopy of coherent modes in proteins.
    Xie, A
    He, Q
    Scheuring, EM
    Sclavi, B
    Chance, MR
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1996, 65 : PA312 - PA312
  • [26] The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) - Part 2: First measurements of the emissivity of water in the far-infrared
    Warwick, Laura
    Murray, Jonathan E.
    Brindley, Helen
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2024, 17 (16) : 4777 - 4787
  • [27] FAR-INFRARED SPECTROSCOPY OF LIH USING A TUNABLE FAR-INFRARED SPECTROMETER
    MATSUSHIMA, F
    ODASHIMA, H
    WANG, DB
    TSUNEKAWA, S
    TAKAGI, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1994, 33 (1A): : 315 - 318
  • [28] Far-infrared spectral observations of the galaxy by the far-infrared absolute spectrophotometer
    Reach, WT
    UNSOLVED PROBLEMS OF THE MILKY WAY, 1996, (169): : 567 - 573
  • [29] Far-Infrared spectroscopy of LiH using a Tunable far-infrared spectrometer
    Matsushima, Fusakazu, 1600, Publ by JJAP, Minato-ku, Japan (33):
  • [30] Negative dynamic mobility of electrons in silicon in the far-infrared range
    R. Brazis
    L. Asadauskas
    R. Raguotis
    M. R. Siegrist
    International Journal of Infrared and Millimeter Waves, 1997, 18 : 1217 - 1222