Pade approximation to the logarithmic derivative of the gauss hypergeometric function

被引:0
|
作者
Hata, M [1 ]
Huttner, M [1 ]
机构
[1] Kyoto Univ, Fac Integrated Human Studies, Div Math, Kyoto 6068501, Japan
来源
ANALYTIC NUMBER THEORY | 2002年 / 6卷
关键词
Pade approximation; Gauss hypergeometric function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct explicitly (n, n-1)-Pade approximation to the logarithmic derivative of Gauss hypergeometric function for arbitrary parameters by the simple combinatorial method used by Maier and Chudnovsky.
引用
收藏
页码:157 / 172
页数:16
相关论文
共 50 条
  • [41] A New Extension of the τ-Gauss Hypergeometric Function and Its Associated Properties
    Srivastava, Hari Mohan
    Tassaddiq, Asifa
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Khan, Ilyas
    MATHEMATICS, 2019, 7 (10)
  • [42] On Relationships Between Classical Pearson Distributions and Gauss Hypergeometric Function
    Masjed-Jamei, Mohammad
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (02) : 401 - 411
  • [43] On Relationships Between Classical Pearson Distributions and Gauss Hypergeometric Function
    Mohammad Masjed-Jamei
    Acta Applicandae Mathematicae, 2010, 109 : 401 - 411
  • [44] A Class of Double Integrals Involving Gauss's Hypergeometric Function
    Jun, S.
    Kilicman, A.
    Kim, I
    Rathie, A. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (03): : 473 - 489
  • [45] Hermite-Hadamard Inequalities Involving The Gauss Hypergeometric Function
    Sarikaya, Mehmet Zeki
    7TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2018), 2018, 2037
  • [46] On some new contiguous relations for the Gauss hypergeometric function with applications
    Rakha, Medhat A.
    Rathie, Arjun K.
    Chopra, Purnima
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (03) : 620 - 629
  • [47] Periods of Hodge cycles and special values of the Gauss' hypergeometric function
    Franco, Jorge Duque
    JOURNAL OF NUMBER THEORY, 2022, 238 : 221 - 252
  • [48] The Wright Function - Numerical Approximation and Hypergeometric Representation
    Prodanov, Dimiter
    LARGE-SCALE SCIENTIFIC COMPUTATIONS, LSSC 2023, 2024, 13952 : 146 - 153
  • [49] ON A FUNCTION ASSOCIATED WITH THE LOGARITHMIC DERIVATIVE OF THE GAMMA-FUNCTION
    HARTREE, DR
    JOHNSTON, S
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1948, 1 (01): : 29 - 32
  • [50] A simplification of Laplace's method: Applications to the Gamma function and Gauss hypergeometric function
    Lopez, Jose L.
    Pagola, Pedro
    Perez Sinusia, E.
    JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 280 - 291