Maximum-likelihood estimation in Optical Coherence Tomography in the context of the tear film dynamics

被引:12
|
作者
Huang, Jinxin [1 ]
Clarkson, Eric [2 ]
Kupinski, Matthew [3 ]
Lee, Kye-sung [4 ,7 ]
Maki, Kara L. [5 ]
Ross, David S. [5 ]
Aquavella, James V. [6 ]
Rolland, Jannick P. [7 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Arizona, Dept Radiol, Tucson, AZ 85720 USA
[3] Univ Arizona, Coll Opt Sci, Tucson, AZ 85720 USA
[4] Korea Basic Sci Inst, Ctr Analyt Instrumentat Dev, Taejon 305806, South Korea
[5] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[6] Univ Rochester, Flaum Eye Inst, New York, NY 14642 USA
[7] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2013年 / 4卷 / 10期
关键词
EYE DISEASE; SCATTERING; RESOLUTION; QUALITY;
D O I
10.1364/BOE.4.001806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding tear film dynamics is a prerequisite for advancing the management of Dry Eye Disease (DED). In this paper, we discuss the use of optical coherence tomography (OCT) and statistical decision theory to analyze the tear film dynamics of a digital phantom. We implement a maximum-likelihood (ML) estimator to interpret OCT data based on mathematical models of Fourier-Domain OCT and the tear film. With the methodology of task-based assessment, we quantify the tradeoffs among key imaging system parameters. We find, on the assumption that the broadband light source is characterized by circular Gaussian statistics, ML estimates of 40 nm +/- 4 nm for an axial resolution of 1 mu m and an integration time of 5 mu s. Finally, the estimator is validated with a digital phantom of tear film dynamics, which reveals estimates of nanometer precision. (C) 2013 Optical Society of America
引用
收藏
页码:1806 / 1816
页数:11
相关论文
共 50 条
  • [31] Maximum-likelihood estimation of the density matrix
    Banaszek, K
    D'Ariano, GM
    Paris, MGA
    Sacchi, MF
    PHYSICAL REVIEW A, 2000, 61 (01): : 4
  • [33] Maximum-likelihood estimation of Mueller matrices
    Aiello, A
    Puentes, G
    Voigt, D
    Woerdman, JP
    OPTICS LETTERS, 2006, 31 (06) : 817 - 819
  • [34] MAXIMUM-LIKELIHOOD ESTIMATION - THE BEST PEST
    PENTLAND, A
    PERCEPTION & PSYCHOPHYSICS, 1980, 28 (04): : 377 - 379
  • [35] APPROXIMATE MAXIMUM-LIKELIHOOD FREQUENCY ESTIMATION
    STOICA, P
    HANDEL, P
    SODERSTROM, T
    AUTOMATICA, 1994, 30 (01) : 131 - 145
  • [36] Maximum-likelihood methods for phylogeny estimation
    Sullivan, J
    MOLECULAR EVOLUTION: PRODUCING THE BIOCHEMICAL DATA, PART B, 2005, 395 : 757 - 779
  • [37] MAXIMUM-LIKELIHOOD ESTIMATION OF SEISMIC MAGNITUDE
    RINGDAL, F
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1976, 66 (03) : 789 - 802
  • [38] Maximum-likelihood method in quantum estimation
    Paris, MGA
    D'Ariano, GM
    Sacchi, MF
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 456 - 467
  • [39] MAXIMUM-LIKELIHOOD ESTIMATION OF SPACECRAFT ATTITUDE
    SHUSTER, MD
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1989, 37 (01): : 79 - 88
  • [40] MAXIMUM-LIKELIHOOD ESTIMATION OF MISSPECIFIED MODELS
    CHOW, GC
    ECONOMIC MODELLING, 1984, 1 (02) : 134 - 138