Maximum-likelihood estimation in Optical Coherence Tomography in the context of the tear film dynamics

被引:12
|
作者
Huang, Jinxin [1 ]
Clarkson, Eric [2 ]
Kupinski, Matthew [3 ]
Lee, Kye-sung [4 ,7 ]
Maki, Kara L. [5 ]
Ross, David S. [5 ]
Aquavella, James V. [6 ]
Rolland, Jannick P. [7 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[2] Univ Arizona, Dept Radiol, Tucson, AZ 85720 USA
[3] Univ Arizona, Coll Opt Sci, Tucson, AZ 85720 USA
[4] Korea Basic Sci Inst, Ctr Analyt Instrumentat Dev, Taejon 305806, South Korea
[5] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[6] Univ Rochester, Flaum Eye Inst, New York, NY 14642 USA
[7] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
来源
BIOMEDICAL OPTICS EXPRESS | 2013年 / 4卷 / 10期
关键词
EYE DISEASE; SCATTERING; RESOLUTION; QUALITY;
D O I
10.1364/BOE.4.001806
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Understanding tear film dynamics is a prerequisite for advancing the management of Dry Eye Disease (DED). In this paper, we discuss the use of optical coherence tomography (OCT) and statistical decision theory to analyze the tear film dynamics of a digital phantom. We implement a maximum-likelihood (ML) estimator to interpret OCT data based on mathematical models of Fourier-Domain OCT and the tear film. With the methodology of task-based assessment, we quantify the tradeoffs among key imaging system parameters. We find, on the assumption that the broadband light source is characterized by circular Gaussian statistics, ML estimates of 40 nm +/- 4 nm for an axial resolution of 1 mu m and an integration time of 5 mu s. Finally, the estimator is validated with a digital phantom of tear film dynamics, which reveals estimates of nanometer precision. (C) 2013 Optical Society of America
引用
收藏
页码:1806 / 1816
页数:11
相关论文
共 50 条
  • [21] Maximum-likelihood algorithm for quantum tomography
    Banaszek, K
    ACTA PHYSICA SLOVACA, 1999, 49 (04) : 633 - 638
  • [22] Maximum-likelihood phase and channel estimation for coherent optical OFDM
    Shieh, W.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (5-8) : 605 - 607
  • [23] Maximum-likelihood optical flow estimation using differential constraints
    Tsui, CJ
    Galatsanos, NP
    Katsaggelos, AK
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 53 - 56
  • [24] Simultaneous Measurement of Tear Film Dynamics Using Wavefront Sensor and Optical Coherence Tomography
    Koh, Shizuka
    Tung, Cynthia
    Aquavella, James
    Yadav, Rahul
    Zavislan, James
    Yoon, Geunyoung
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (07) : 3441 - 3448
  • [25] Tear Film Dynamics and Corneal Ultrastructure With Ultrahigh Speed and Resolution Optical Coherence Tomography
    Leitgeb, R. A.
    Schmoll, T.
    Singh, A.
    Kolbitsch, C.
    Le, T.
    Sting, A.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (13)
  • [26] A suboptimal iterative method for maximum-likelihood sequence estimation in a multipath context
    Rousseaux, O
    Leus, G
    Moonen, M
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2002, 2002 (12) : 1437 - 1447
  • [27] A suboptimal Iterative Method for Maximum-Likelihood Sequence Estimation in a Multipath Context
    Olivier Rousseaux
    Geert Leus
    Marc Moonen
    EURASIP Journal on Advances in Signal Processing, 2002
  • [28] MAXIMUM LIKELIHOOD SURFACE PROFILOMETRY VIA OPTICAL COHERENCE TOMOGRAPHY
    Rapp, J.
    Mansour, H.
    Boufounos, P.
    Orlik, P.
    Koike-Akino, T.
    Parsons, K.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1561 - 1565
  • [29] MISSING DATA AND MAXIMUM-LIKELIHOOD ESTIMATION
    HSIAO, C
    ECONOMICS LETTERS, 1980, 6 (03) : 249 - 253
  • [30] MAXIMUM-LIKELIHOOD ESTIMATION OF PROPORTION OF NONPATERNITY
    POTTHOFF, RF
    WHITTING.M
    AMERICAN JOURNAL OF HUMAN GENETICS, 1965, 17 (06) : 480 - &